

•HBT(Hanbury Brown & Twiss effect)

- we can see the source size by measuring intensity of interference between two identical particles .

Wave function
$$\psi = \frac{1}{\sqrt{2}} \left(e^{ip_1(x_1 - r_1)} e^{ip_2(x_1 - r_2)} \pm e^{ip_1(x_1 - r_2)} e^{ip_2(x_2 - r_1)} \right)$$

Correlation function $C_2 = \frac{P_{12}(p_1, p_2)}{P_1(p_1)P_2(p_2)}$

$$= 1 + |\tilde{\rho}(q)|$$
 $\tilde{\rho}$: Fourier transform ρ : density
$$R$$
: Source Size
 λ : Chaoticity parameter
$$\frac{P_1}{r_2} = \frac{x_1}{r_2}$$

$$\frac{x_1}{r_2} = \frac{x_2}{r_1}$$

$$\frac{x_2}{r_2} = \frac{P_2}{r_1} = \frac{x_2}{r_1}$$

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

0.2

source

kt dependence

HBT in expanding source? $\overrightarrow{k_T} = \frac{\overrightarrow{p_{T_1}} + \overrightarrow{p_{T_2}}}{2}$ \diamond static source : HBT radius = Full source size \diamond expanding source : HBT radius \neq Full source size \diamond Radial flow effect : $\beta = \beta_{max}$ (r/R)

Two track resolution

Track splitting

One track is falsely reconstructed as two tracks that are spatially close.

Track merging

PbPb Event Display

- Two tracks that are spatially very close are falsely reconstructed as one

Reconstructed track

- True track 1
- True track 2

∆ø* v.s. △η in various Angular Distance inside TPC

Δφ×v.s. Δη in Angular Distance 1.1m

kT DependenceAngular distance Dependence

0.04

0.02

-0.02

-0.04

-0.06

-0.08

-0.1

0.1

0.08

-0.1

-0.05

0

Δφ*

 $\cdot R = 1.1 [m]$

ag* v.s. an in Angular Distance 1.1m

- kT Dependence
- Angular distance Dependence

•R = 1.1 [m]

Fraction of Shared TPC Cluster

* two track quality factor

Separate tracks

Probably split track Sharity = +0.73

Sharity = 0.0

8

2466

8

321 332 1335 1346

Qfactor * Qfactor(two track quality factor)

and the

ž.

1001

8 2

- -1 if both tracks have a hit in padrow
- qi = 0 if none of the tracks have a hit in padrow
 - +1 if only one track has a hit in padrow or a hit is shared

Separate tracks Quality = -0.5 Probably splitProbably separateProbably splittracktracktrackQuality = +1.0Quality = -0.125Quality = +0.36

Two track resolution

- Fraction of Shared TPC cluster < 0.05
- •Quality factor < 0.5

Δφ* v.s. Δη in Angular Distance 1.1m

∆ø* v.s. △η in various Angular Distance inside TPC

∆ø* v.s. △η in various Angular Distance inside TPC

Conclusion

Optimized Pair cut

- Fraction of Shared TPC clusters < 0.05
- Quality factor < 0.5
- $\blacksquare \Delta \phi^*$, $\Delta \eta$ cut @ R = 1.1 [m]
- 3σ of gaussian cut
- $|\Delta \phi^*| < 0.066 \&\& |\Delta \eta| < 0.018$

Azimuthal sensitive HBT

QGP

Quark Gluon Plasma: QGP 超高温・高密度状態に達成する物質状態

通常では強い相互作用により核子内に 閉じ込められているクォークやグルーオンが 比較的大きな体積内を自由に飛び回る状態 Big Bang後、数µ秒の初期宇宙 中性子星の内部に存在

高エネルギー原子核実験により再現

Space-time characteristics

 Address the space-time characteristics of emitting source 8 8 (b) (a)(c) 8 R_{side} (fm) Riong (fm) Rout (fm) 4 4 **Motivation** 2 2 2. study space-time characteristics of QGP ALICE Pb-Pb 2.76 TeV STAR Au-Au 200 GeV - Though various Femtoscopy parameter dependence 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0 0 $\langle k_T \rangle$ (GeV/c) $\langle k_T \rangle$ (GeV/c) $\langle k_T \rangle$ (GeV/c)

kt Dependence

TPC

TPC (Time Projection Chamber)

- 3D track reconstruction
- 18 Segment × 150 rows
- Global tracking
- Precise PID via dE/dx
- Measure momentum

ITS

ITS (Inner Tracking System)

- 6 layers of Silicon detectors
- 2 SPD (Silicon Pixel Detector)
- 2 SDD (Silicon Drift Detector)
- 2 SSD (Silicon Strip Detector)
- Reconstruction of primary and secondary vertices
- Contributes to the global tracking
- PID via dE/dx measurement very low pT 35 MeV ~)
- Event trigger & Multiplicity

SPD

Optimization of the pair cut

