高エネルギー陽子ビームのための 高時間分解能 チェレンコフビームカウンターの

平成12年度物理学主専攻卒業論文

- 学籍番号 970340
- 氏名 坂井 真吾
- 指導教官 三明 康郎
 - 江角 晋一

目次

第1章 序論

第2章 基本原理

- 2 1飛行時間測定法2 2チェレンコフ光
- 2 3 光電子増倍管
- 第3章 チェレンコフカウンター

 - 3 1 開発方針3 2 放射媒体の形状の原理
 - 3-3 カウンターの試作

第4章 予備実験

- 第5章 チェレンコフカウンターの性能評価
 - 5-1 セットアップ
 - 5 2 位置の最適化
 - 5-3 光電子数の見積もり
 - 5 4 時間分解能の測定

第6章 まとめ

謝辞

参考文献

第1章 序論

高エネルギー原子核衝突実験ではおびただしい数の粒子が生成される。衝突後の状態を知るためには生成された粒子を識別する必要がある。実験でもちいられている有効 な粒子識別装置としては飛行時間測定器がある。この装置は、一定の距離において設置 したスタートカウンターとストップカウンターにより粒子が通過する時間を測定し、そ の違いによって粒子の識別をおこなうことができる。粒子識別の精度の良さはこの飛行 時間測定器の時間分解能の良さにかかってくる。飛行時間測定器の時間分解能 はスタ ートカウンターの時間分解能とストップカウンターの時間分解能に依存し

$$\boldsymbol{s} = \sqrt{\boldsymbol{s}_{start}^2 + \boldsymbol{s}_{stop}^2}$$

であたえられる。したがって飛行時間測定器の時間分解能を向上させるためにはスター トカウンターおよびストップカウンターの時間分解能を向上させる必要がある。

我々の研究室では、飛行時間測定器の時間分解能を向上させるためストップカウンタ ーとして Pestov Spark Counter や TOF Counter などその高時間分解能化を進めてい る。一方、スタートカウンターの高時間分解能化も必要である。

本研究ではプロトンビームをもちいた衝突実験を想定し、飛行時間測定器にスタート のタイミングをあたえるビームカウンター(スタートカウンター)の開発をおこなった。 現在の衝突実験ではビームカウンターとしてシンチレーション光をもちいたシンチレ ーションカウンタとチェレンコフ光を用いたチェレンコフカウンターがある。シンチレ ーションカウンターでは時間分解能は40~50ps程度えられているが、シンチレー ション光の特性、すなわち時間応答の遅い成分(燐光、遅発蛍光)があるために、これ 以上の時間分解能の向上は難しいといわれている。チェレンコフカウンターは SPS の 重イオン衝突において時間分解能30(ps)が得られている。したがって本研究では チェレンコフ光をもちいてさらなるビームカウンターの時間分解能の向上を目指した。

第2章 基本原理

2 - 1 飛行時間法

原子核、原子核衝突では多くの荷電粒子が生成される。それらを識別する方法として 飛行時間法(TOF法)がある。飛行時間法とは「一定の運動量をもつ粒子が一定の距 離を通過するのに要する時間を測定することにより、粒子の速度を知り、それによって 粒子のエネルギーを知る。」方法である。

実際の実験においては電磁石をもちいて磁場中の荷電粒子の曲率半径rを測定し

 $P = qBr \qquad (\vec{x} \quad 1)$

(p:運動量、q:電荷、B:磁場の強さ、r:曲率半径)

より荷電粒子の運動量 P を求める。粒子の速度 は飛行時間測定装置、一定の距離に置 いたスタートカウンターとストップカウンターで測定されたそれぞれの通過時刻の差 から速度を決める装置、によって求める。求められた P、 を用い

$$mc^2 = cp\sqrt{b^{-2}-1}$$
 (\vec{x} 2)

により粒子の質量mがもとめられ、粒子の種類が決定される。

この飛行時間法による粒子識別能力は、時間測定に用いる検出器の時間分解能による ところが大きい。飛行時間測定器の時間分解能はスタートカウンターの時間分機能 *s*_{start}とストップカウンターの時間分解能*s*_{star}をもちいて

$$\boldsymbol{s}_{tof} = \sqrt{\boldsymbol{s}_{start} + \boldsymbol{s}_{stop}}$$
 (\vec{x} 3)

により与えられる。したがって飛行時間測定器の時間分解能を向上させるにはスタート カウンターおよびストップカウンターの時間分解能の向上が必要である。

2 2.チェレンコフ光

物質中を通過する荷電粒子の速さ が、その物質中の光の速さ*c/n*(cは真空中での 光の速さ、nは物質の屈折率)より大きいとき、粒子の飛跡にそって物質が発する弱い 光のことをチェレンコフ光という。特徴は光の性質(色・強さ)が物質に無関係である ことと、図に示すように粒子を頂点とする円錐面にそって光が広がることである。

図(1)チェレンコフ光放射

チェレンコフ光の放射角度々は

$$\cos \boldsymbol{q}_c \equiv \frac{1}{\boldsymbol{b}_l} \qquad (\vec{z}, 4)$$

によって与えられる。これはホイヘンスの波動論によって説明される。今図()の A~B を荷電粒子が進むとする。このとき飛跡 AB 上の任意の点からでたチェレンコフ光は波 面 P B を形成する。任意の時間 においてチェレンコフ光の進んだ距離 AP=(c / n)・、一方粒子の進んだ距離 AB= c・。したがって

$$\cos \boldsymbol{q} = \frac{PB}{AB} = \frac{1}{\boldsymbol{b}n} \qquad (\vec{\boldsymbol{x}} \quad 5)$$

粒子飛跡の単位長さあたり発生するチェレンコフ光の量は

$$\frac{dN}{dx} = \frac{\boldsymbol{a}^2 z^2}{r_e m_e c^2} \int \sin^2 \boldsymbol{q}_e dE \qquad (\vec{z}, \vec{b})$$

ここで*m_e* = 0.511003(*Mev*) (電子の質量)

$$r_e = \frac{e^2}{m_e c^2} = 2.817983 \times 10^{-13}$$
(cm)、 $a = \frac{e^2}{\hbar c} \cong \frac{1}{137}$ (微細構造定数)

で与えられる。荷電粒子が物質中を通過するときに、チェレンコフ放射によって失うエネルギーは一般的には電離損失や放射損失に比べてはるかに小さいといわれている。今回の実験では光電子増倍管をもちいてチェレンコフ光を測定する。光電子増倍管で光電子として測定されるチェレンコフ光の数は

$$N_{pe} = L \frac{\boldsymbol{a}^2 z^2}{r_e m_e c^2} \int \boldsymbol{e}_{coll}(E) \boldsymbol{e}_{det}(E) \sin^2 \boldsymbol{q}_c(E) dE \qquad (\vec{z} \cdot 7)$$
$$= N_o \times L \times \sin^2 \boldsymbol{q}_c$$
$$N_0 = \frac{\boldsymbol{a}^2 z^2}{r_e m_e c^2} \int \boldsymbol{e}_{coll} \boldsymbol{e}_{det} dE$$

で与えられる。ここでLは荷電粒子が進む長さ、 e_{det} は光電子増倍管の量子効率、 e_{coll} は カウンターの集光率を表す。

2-3.光電子増倍管と時間分解能

時間分解能を測定するのに光電子増倍管がもちいられる。光電子増倍管とは、光電効 果により光を光電子に変換、増幅し測定可能な電流に変換する装置である。

図(2)光電子電子増倍管

図(3)に示すように入射光が光電面に達してから電流がピークに達するまでの時間を 電子走行時間という。

実際何度か電子走行時間を測定すると完全に同じ値ではなく時間的なひろがりをもつ。

図(4)電子走行時間の広がり(T.T.S)

その分布の半値幅を電子走行時間の広がり(T.T.S)という。電子走行時間の広がりの 値は光電子増倍管の種類によって異なる。この電子走行時間の広がりは時間分解能に直 接関係するもので、時間分解能 は入射光電子数*N_{pe}と*電子走行時間の広がり TTS を もちいて、

$$\boldsymbol{S} \cong \frac{TTS}{\sqrt{N_{pe}}} \qquad (\vec{\mathbf{x}} \quad 8)$$

と表される。したがって入射光電子がおおいほど時間分解能はよくなる。

第3章 チェレンコフカウンター

3-1 開発方針

陽子ビームを用いた衝突実験ではシンチレーション光を用いたシンチレーションカ ウンターが使用されている。時間分解能は 40~50(ps)程度得られている。しかしシンチ レーション光の特性上これ以上の時間分解能は困難といわれている。そこで本研究にお いては SPS の重イオン衝突で時間分解能 30(ps)が得られているチェレンコフカウンタ

ーの適用を考えた。時間分解能は光電子数N_nに対して

$$\mathbf{s} \propto \frac{1}{\sqrt{N_{pe}}}$$
 (I, I, 9)

のある関係がある。したがって高時間分解能を得るためにはチェレンコフ光の集光率を 高める必要がある。さらに高時間分解能を得るためにはチェレンコフ光の到達時間にば らつきがないことと、光電子増倍管の特性上光を1点に集光して入射する必要がある。 本研究では以上3つの条件を満たすようなカウンターの構造を考えた。

3-2 放射媒体の形状の原理

今回試作したチェレンコフカウンターはチェレンコフ光の集光率をあげるため放射 媒体と集光器を一体化した。具体的には放射媒体内で発生したチェレンコフ光を放射媒 体と空気の境界面で反射させて集光をおこなう。さらに反射したチェレンコフ光を一点 で集光するために媒体の形状に放物線の性質をもちいた。放物線の式は

 $y^2 = 4px$ (式-10) (pは焦点) であらわされ、放物線の軸に平行に入射した光、いいかえれば軸と同じ傾きで入射した 光は焦点に集まるという性質をもつ。基本原理「2-2 チェレンコフ光」で記したよ うにチェレンコフ光はある一定の角度で円錐状に放射される。したがって焦点(p,0) が原点(0,0)にくるようにし、放物線の軸をチェレンコフ光の放射角度と同じだけ回 転する。それをさらに×軸のまわりで360度回転させれば円錐状に放射されたチェレ ンコフ光を1点に集めることが可能である。 原点が焦点となる放物線の式は

$$y^2 = 4p(x+p)$$
 (式 11)

チェレンコフ光の放射角度を q_c とすれば、(式 11)を原点の周りに q_c 回転した放物 線の式は

$$(-x\sin\boldsymbol{q}_{c} + y\cos\boldsymbol{q}_{c})^{2} = 4p(x\cos\boldsymbol{q}_{c} + y\sin\boldsymbol{q}_{c} + p) \qquad (\vec{z}, 12)$$

で表される。カウンターを制作するにあたっては x > 0、 y < 0の領域の部分を x 軸周 りの360回転した。

図(5)チェレンコフカウンターの原理

3-3 カウンターの試作

今回試作したチェレンコフカウンターを図(6)に示す。このカウンターは放射媒体 と光電子増倍管が一体となったものである。放射媒体内で発生したチェレンコフ光が媒 体の外へ透過するのを防ぐため媒体のまわりにアルミ箔をまき、チェレンコフ光以外の 光が光電子増倍管に測定されないようにアルミ箔の上を遮光テープでまいた。放射媒体 の形状は(式 11)にしたがう関数である。チェレンコフ光の放射媒体には屈折率が 1.5のアクリライトを用いた。放射媒体の波長領域は350nm以上である。光電子増 倍管は HAMAMATU の H2483(R2083)を用いた。主な仕様は以下のとおりである。

大きさ・・・2 inch 立ち上がり時間・・・0.7ns 電子走行時間・・・16ns 電子走行時間の広がり・・・370ps 量子効率・・・~25% 波長領域・・・350nm~650nm

荷電粒子(入射粒子)は2GeV/cのパイオンビームをもちいる。

図(6)カウンターの形状

したがってこのカウンターの波長感度領域は 350~650(nm)、エネルギー領域としては 1.8 ~ 3.4 (eV)。今回の試作にあたり(式 11)において p = 3.5 と決め、長さ は 2 2 c m とした。また荷電粒子の運動エネルギーが 2 GeV/c なのでチェレンコフ光の 放射角度 $q_c = 48(\text{ (()) である}, f_{\pm} \text{ ()) である}, f_{\pm} \text{ ()) である}, f_{\pm} \text{ ()) で) 3 () 1.14(ns) で 到 達 時間 の ばら つきは 非常にちいさい。この形状から 期待される 光電子数は 730(個)、時間分解能は 13.7(ps) である。光電子数は 以下のようにして 見積もった。$

今回開発にもちいた光電子増倍管の量子効率、アルミの反射率、媒体の透過率との波 長の関係はグラフ(1)のようになる。

グラフ(1)

したがって全反射領域において

$$\int \boldsymbol{e}_{det} \boldsymbol{e}_{coll} dE = 0.192 \text{ (eV)}$$

その他の領域では

$$\int \boldsymbol{e}_{det} \boldsymbol{e}_{coll} dE = 0.168 \, (eV)$$

この値を(式 7)代入して

 $N_{pe} = 730$ (個)

となる。

第4章 予備実験

この章では大学の実験室でおこなったチェレンコフカウンターに用いる光電子増倍 管の予備実験について述べる。

<目的>

チェレンコフカウンターに用いる光電子増倍管の予備実験をおこう。

<セットアップ>

<装置>

・ レーザー

光源として HAMAMTU のピコ秒ライトパルサーをもちいた。これはレーザー ダイオードーをもちいた、パルス幅 50(ps)以下、パルス繰り返し、単発~2 MHz の長短パルス光源である。波長は 410nm である。

 \cdot T D C (Time to Digital Converter)

装置にスタートの信号が入ってきてからストップ信号が入ってくるまでの時間 差を測定する装置。おなじ測定を何度もおこなうと TDC の値は常に一定の値にな らずある値のまわりに分布をつくる。この分布をガウス分布で近似したときの分布 の広がり())が時間分解能である。 · ADC(Analog to Digital Converter)

電荷量を測定する装置。Sig in に入ってきた出力波形を gate の幅で積分して 電荷量を求める。

ADC を用いて電荷量を測定したときの分布をガウスフィットしたときの ADC の平 均値 µ と光電子増倍管に入射した光が光電効果によって光電子になる数N_m

m= **a**N_{pe} (式 13)

の関係がある。すなわち ADC の平均値 µ と光電子数には比例関係がある。さらにガウスフィットしたときの標準誤差 s のあいだには

 $s = a \sqrt{N_{pe}}$ (式 14)

したがって(式 13)(式 14)から光電子数は

$$N_{pe} = \left(\frac{\boldsymbol{m}}{\boldsymbol{s}}\right)^2 (\vec{z}, 15)$$

から求まる。

・ ディスクリミネーター

あるしきい値(スレッシュホルド)以上のアナログ信号を NIM 信号に変換する 装置。

図(9) ディスクリミネーター

・ ND フィルター

光子数を調整することができる。そのフィルターの光学濃度 OD と光電子数には 以下のような関係がある。

 $N_{pe} = a \times 10^{-b \times OD}$ (式 16)

したがってレーザーと光電子増倍管の間に ND フィルターをおくことによってレ ーザーからくる光子数を調整することができる。

<実験1 フィルターと光電子数の関係>

ND フィルターを光電子増倍管の前に電圧を変化させながら ADC の値を測定し(式 - 15)から光電子を計算した。グラフのプロット点はそれぞれの電圧で得られた光電子数を平均したものである。

グラフ(2)光電子数とフィルターの関係

フィルターが 1.0 より少ないところで線形性が失われている。これは光電子増倍管への入射光子数が多すぎたためだと考える。したがって今後はフィルター1.0 以上のところもちいてフィットした関数で光電子数を見積もることにした。

<実験2 光電子数と ADC の関係 >

実験1よりNDフィルターと光電子数の関係がわかった。したがってフィルター変え ながら ADC を測定することにより KEK 実験でもちいる光電子増倍管の光電子数と ADC の関係がわかる。予備実験では光電子増倍管に電圧を 2000V、2400V、2800V、 3000V、3300Vかけ ADC と光電子数の関係を調べた。結果をグラフ(3)にしめす。

グラフ(3) 光電子数と ADC の関係

<実験3-光電子数と時間分解能の関係>

ND フィルターを変えながら電圧 2000V、2400V、2800V、3000V、3300V での TDC 分布を測定することにより光電子数と時間分解能の関係を調べた。結果をグラフ(4)

グラフ(4)光電子数と時間分解能

第5章 チェレンコフカウンターの 性能評価

この章では2000年12月に KEK 東カウンターホールT1ビームラインでおこなった2GeV/cのパイ中間子ビームをもちいておこなった新型チェレンコフカウンターの性能評価について述べる。

5-1 セットアップ

以下にセットアップをしめす。

図(10)セットアップ

今回の性能評価ではチェレンコフカウンターの時間分解能をより正確に測定する ために2本のスタートカウンターをもちいることにした。さらにチェレンコフカウンタ ー内での核反応の測定に及ぼす影響を取り除くため実験後半でチェレンコフカウンタ ーの後ろにディファイニングカウンターを置いた。本実験での回路図を次のページにし めす。

5-2 位置の最適化

<目的>

時間分解能は光電子数の平方根に反比例する(式 9)。したがって高時間分解能を 得るために光電子数がいちばんおおくえられる位置、すなわち ADC の値がいちばん大 きいところを以下のようにして決めた。

<手順と結果>

まずはじめにチェレンコフカウンターを左右に1 c mずつ動かしてそれぞれの位置 での ADC の値を測定した。結果をグラフ(5)にしめす。位置が0 c m (すなわちセ ットアップ時の状態)でいちばん大きな値が得られている。したがってこの位置でビー ムがチェレンコフカウンターの中心を貫通していると考える。ビームの中心からチェレ ンコフカウンターが離れると ADC のピークの値はだんだん小さくなっていった。 したがってビームの中心から離れると光電子増倍管にチェレンコフ光が集まりにくく なる考える。

グラフ(5)位置と ADC の関係

次にチェレンコフカウンターを位置0cm のところにおきチェレンコフカウンターを 5度ずつ左右に回転させ ADC の測定をおこなった。結果をグラフ(6)にしめす。

グラフ(6)角度とADC

この結果角度0度(すなわちセットアップ時の状態)のときいちばん大きい値が得られた。さらにチェレンコフカウンターがビーム軸にたいして傾くと ADC の値が小さくなっていった。(光電子が集まらなくなっていく。)今後の測定は位置0cm、角度0度のところで測定をおこなう。

5-3 光電子数の見積もり

<目的>

光電子数を測定することにより今回開発したカウンターのN₀を求める。

<手順>

ADC の平均値と光電子数には比例関係がある。したがってチェレンコフカウンターの ADC を測定することにより光電子数を見積もることができる。今回は第4章の予備 実験で得られた光電子数と ADC の関係をもちいた(グラフ3)。ADC の測定は光電子 増倍管に電圧を2000V、2400V、2800V、3000V、3240Vをかけ おこなった。結果をグラフ(7)にしめす。

グラフ(7)光電子数と ADC の関係

この結果から光電子数を620±56(個)と見積もった。しかしビームが光電子増倍 管を貫通していることからこの値には光電子増倍管のガラス面からでるチェレンコフ 光の光電子も含まれている。したがって光電子増倍管のガラス面からの光電子数の見積 もりをおこなった。測定はビームライン上に遮光した光電子増倍管を置き電圧を280 0Vかけておこなった。ADC 分布をグラフ(8)にしめす。測定の結果ガラス面から のチェレンコフ光の ADC の値は43.2(ch)であった。この値からガラス面から の光電子数を28(個)と見積もった。したがってこのカウンターから得られた光電子 数は590±56(個)である。

<考察>

(1) このカウンターから得られた光電子数は590±56(個)であった。したが ってこのチェレンコフカウンターの N_0 は

 $N_0 = 53.6 \pm 5$

今後を増やす方法としては波長感度領域(紫外光領域に対して)が広い光電子 倍管や放射媒体を用いることが考えられる。

(2)実験前の予想ではチェレンコフカウンターから得られる光電子数は730個 あった。実際測定に得られた値は590±56(個)で予想よも少なかった。この原因について考えた。1つの原因としてアルミでの集光率が予想より悪かったためだと考える。集光率が低下した原因はアルミをまくさいアルミの面にしわができたためだと考える。そのためチェレンコフ光は予測した反射の向きとは違う方向に反射され光電子増倍管の光電面に到達しなかったと考える。

5-4 時間分解能の測定

5-4-1 時間分解能の解析法

5 - 1のセットアップから得られるチェレンコフカウンターの時間分解能にはスタ ートカウンター1,2の時間分解能も含まれている。したがってチェレンコフカウンタ ーのだけの時間分解能を得るために以下のような解析をおこなうことにした。

 $\sqrt{\boldsymbol{s}_{ST1}^{2} + \boldsymbol{s}_{st2}^{2}} = \boldsymbol{s}_{TDC(ST1) - TDC(ST2)}$ $\sqrt{\boldsymbol{s}_{ST1}^{2} + \boldsymbol{s}_{CRK}^{2}} = \boldsymbol{s}_{TDC(ST1) - TDC(CRK)} \quad (\vec{x} \quad 17)$ $\sqrt{\boldsymbol{s}_{ST2}^{2} + \boldsymbol{s}_{CRK}^{2}} = \boldsymbol{s}_{TDC(ST2) - TDC(CRK)}$

ここで $s_{TDC(ST1)-TDC(ST2)}$ はスタートカウンター1のTDC分布とスタートカウンター

2のTDC分布の引き算をしたときのTDC分布の広がりをである。その他の右辺も同様である。この3つの連立方程式を解くことによりチェレンコフカウンターの時間分解 能をもとめた。

5-4-2 電圧、しきい値の最適化

<目的>

高時間分解能をえるために電圧、しきい値の最適化をおこなった。

<手順と結果>

光電子増倍管に電圧を2000Vから200Vずつかけていき3240Vまでの時 間分解能を測定した。ディスクリミネーターのしきい値は-100mVに設定した。結 果をグラフ(9)にしめす。2800Vでいちばんいい結果(時間分解能28.6ps) が得られた。つぎに電圧を2800Vに固定してしきい値を変化させ時間分解能の測定 をおこなった。結果をグラフ(10)にしめす。結果しきい値が-500mVでいちば んいい結果(時間分解能18ps)が得られた。

<考察>

5 - 3からチェレンコフカウンターからえられる光電子数は590±56(個)であ る。したがって(式 - 8)から期待される時間分解能は15.2±0.8(ps)であ る。測定で得られた時間分解能は18(ps)であった。したがってこの時間分解能が 悪くなった原因の考察をおこなった。 時間分解能が18ps(電圧2800V、しきい値-500mV)得られたときのADC TDC分布をグラフ(11)にしめす。グラフ(11)をみるとADCのチャンネルが 100~700(CH)でTDCの値がおおきいすなわち到達時間が遅いことがわかる。 したがってこの部分が時間分解能を悪くしていると考えた。この部分はビームによって 発生したチェレンコフ光以外の寄与、すなわちビーム以外によるチェレンコフカウンタ ーの核反応が考えられる。したがってチェレンコフカウンターの後ろにさらにディファ イニングカウンターをおけばこの効果を取り除くことができ、さらなる高時間分解能化 ができると考えた。

グラフ(11)TDC ADC 分布

5-4-3 ディファイニングカウンターを2つ用いた

時間分解能の測定

<目的>

5 - 4 - 2 で述べたように5 - 1 のセットアップではチェレンコフ光以外のものも 測定にかかっていると考えられる。したがってチェレンコフカウンターの後ろにデ ィファイニングカウンターをおくことによりチェレンコフ光だけの寄与を測定した。

<手順と結果>

チェレンコフカウンターの後ろにディファイニングカウンターをおき測定をおこ なった。そのときの ADC 分布(比較のためにディファイニングカウンター1つの ときと光電面からの光電子による ADC 分布も同時にしめす)をグラフ(12)に しめす。

ディファイニングカウンターをチェレンコフカウンターの後方におくことにより核反応の影響を取り除くことができた。このときの ADC TDC 分布をグラフ(13)にしめす。

イニングカウンターをおいたときの ADC TDC 分布

到達時間が遅い部分がきえ時間のばらつくがちいさくなった。この分布から ADC(電荷量)とTDC(到達時間)の間には相関関係がないと考えられる。

次にチェレンコフカウンターの時間分解能を求めるために TDC(ST1) - TDC(ST2)、 TDC(ST1) - TDC(CRK)、TDC(ST2) - TDC(CRK)の分布をつくった。結果をグラフ(1 4)にしめす。この結果より

$$\sqrt{\boldsymbol{s}_{ST1}^{2} + \boldsymbol{s}_{ST2}^{2}} = 2.5$$

$$\sqrt{\boldsymbol{s}_{ST1}^{2} + \boldsymbol{s}_{CRK}^{2}} = 1.9$$

$$\sqrt{\boldsymbol{s}_{ST2}^{2} + \boldsymbol{s}_{CRK}^{2}} = 1.86$$

以上の結果からチェレンコフカウンターの時間分解能は

$$s_{CRK} = 14.9 \pm 1.3$$
 (ps)

となった。これは現在得られいるシンチレーションカウンターの時間分解能よりいい い時間分解能である。

グラフ(14)

スタートカウンター1,2のそれぞれの時間分解能は

 $\boldsymbol{s}_{ST1} = 44.3 \pm 0.8(ps), \boldsymbol{s}_{ST2} = 44.1 \pm 0.8(ps)$ cb3.

<考察>

1. チェレンコフカウンターの時間分解能を上記の方法以外の方法でも求めた。 スタートカウンター1,2を平均したものとチェレンコフカウンターの時間分解能 の間には

$$\sqrt{\boldsymbol{s}_{ST}^2 + \boldsymbol{s}_{CRK}^2} = \boldsymbol{s}_{TDC(ST)-TDC(CRK)}$$
 (式 18)

の関係がある。ここで ST は 2 つの平均をあらわす。TDC(ST) - TDC(CRK)の分布 をグラフ(15)にしめす。

グラフ(15)

ここでスタートカウンター1,2の性能は同じであると仮定して

$$\boldsymbol{s}_{st} = \frac{44.3 + 44.1}{2} \times \frac{1}{\sqrt{2}} = 31.3(ps)$$

したがって(式 18)から

$$s_{CRK} = 18.9 \pm 1.0(ps)$$

第6章 まとめ

本研究では陽子ビーム用高時間分解能チェレンコフビームカウンターの開発をおこ なった。実験前の予想では光電子数 730(個)、時間分解能は 13.7(ps)であった。実験 の結果このカウンターでは光電子数 590±56(個)、時間分解能は 16.8±2.0(p s)が得 られた。またこのカウンターでは $N_0 = 53.6\pm5.0$ である。

今後さらに高時間分解能をすすめるうえで以下の方法が考えられる。

1.TTSの値が小さい光電子増倍管を使用する。

2.波長感度領域が広い媒体の使用。(具体的には石英でできたクォーツの使用) 同時にカウンターの小型化もすすめていく必要がある。

謝辞

本研究をおこなうにあたり、多大なご指導、ご助言をいただきました三明康郎教授 に深く感謝の意を表します。

また、本論文を作成するにあたり、ご協力いただいた皆様にお礼を述べさせていた だきます。

江角晋一氏には、KEK 実験ならびにその後の解析にいたるまでたくさんの助言、ア ドバイスをいただきました。

佐藤進氏には、本研究をおこなうにあたり自分の気がつかないところをご指摘いただ きました。

箱崎大祐氏、ならびに相沢美智子氏には卒論をおこなううえで何度も相談にのってい ただいたり、たくさんの助言をいただきました。

小野雅也氏には計算機の使い方を教えていただいたり、KEK 実験においてはさまざ ま面でサポートしていただきました。

鶴岡裕士氏にはこの卒論をおこなうにあたり最も重要な光電子増倍管の使い方を教 えていただきました。

本研究をおこなうにあたり、ご協力いただいたみなさまにもう一度感謝の意を表しま す。

参考文献

- 1 . Techniques for Nuclear and Particle Physics Experiments Springer-Verlag W.R.Leo
- 2.放射線計測の理論と演習 上・下巻 現代工学社 ニコラス ツルファニディス (坂井英次 訳)
- 3.物理学事典 培風館
- 4. 放射線計測ハンドブック
 日刊工業新聞社
 GLENN F. KNOLL (木村逸郎、坂井英次 訳)
- 5 . SUBATOMIC PHYSICS PRENTICE HALL HANS FRAUENFELDER ERNEST M.HENLEY