

Hadrons reflect the bulk property of collision system and its evolution. Jets carry information at the early stage of the evolution.

主な観測量と証拠

時間 (fm) 数10 ~0 ~1 ~5 温度(MeV) 250 150 150 110 前平衡 ----QGP--|--混合相-|-ハドロン相-| 状態 |---- バリオン分布、dE_T/dy, dN/dy ------初期エネルギー密度 初期バリオン密度 化学平衡 |-粒子比:ストレンジネス,粒子/反粒子 熱平衡 粒子スペクトル、フロー Jet Quenching |-- Jet 生成 →energy loss --| Jet の測定、leading baronの測定 J/ ψ Suppression |--- 生成 \rightarrow Debye screening + absorption --| J/ψの収量;衝突の中心度依存性、質量依存性 Chiral transition vector meson (ρ, ω, ϕ) \rightarrow lepton-pair Charm/bottom - initial+thermal(?) -

系の初期条件

初期エネルギー密度、初期バリオン密 度

- 初期エネルギー密度
 dE_T/dy, dN/dy → 推定
 Bjorken's formula (scaling 領域で)
 - カスケード計算
- ・バリオン密度 – dN_B/dy

 $dN/dy, dE_T/dy$ لم 初期エネルギー密度

初期エネルギー密度

高いエネルギーでの衝突=高い初期エネルギー密度

QGP実現の可能性

 RHIC、LHCでは大きなマージン

 QGP状態の持続時間
 取り扱いがシンプル

 粒子密度が大

/2m_p]

- → 平均自由行程小
- より理想的に近い流体
 - 熱力学的平衡
 - 化学平衡

荷電粒子多重度

- $dN_{ch}/d\eta \sim 609\pm1\pm37$
 - 中心衝突 0-5%
 - Au+Au
 - $-E_{NN} = 130 \text{ GeV}$
- dN_{ch}/d y ~ 410 - 中心衝突 0 -5%
 - P b+P b
 - $-E_{NN} = 17.2 \text{ GeV}$

pseudo-rapidity distributions

- PHOBOS has really fantastic η coverage
- when wounded nucleon model is divided out, there is still an increase at mid-rapidity
- evidence for some relative decrease in $dN_{ch}/d\eta$ at high η

Systematic error ±(10%-20%)

PbSc Calorimeter

	PbSc
Size(cm x cm)	5.52 x 5.52
Depth(cm)	37.5
Number of towe	rs 15552
Sampling fraction	n ~ 20%
^η cov.	0.7
^φ cov.	90+45deg
^η ∕mod	0.011
[¢] ∕mod	0.011
Xo	18
Molère Radius	~ 3cm

EMCal の性能

- 1 GeV/c のパイオンに対するレスポンス
 MIP + 反応によるテール
- 二本のγ線から π⁰の再構成

 $dN_{CH}/d\eta \ge dE_T/d\eta$

- 良く似た振る舞い
- ・ 収量は Np (number of participants) よりも急速に増加
 - → Ncoll (number of binary collisions) に比例した項
- ハードプロセスの割合は、centrality とともに増加 (30% in mid-central から~50% in most central)

CMSエネルギー依存性

初期エネルギー密度

Model comparison

Naïve hard&semi-hard two component model (HIJING) is excluded.

High energy QCD gluon saturation model (KLN) and two-component mini-jet model with nuclear shadowing (Mini-jet) are favored.

EKRT K.J.Eskola et al, Nucl Phys. B570, 379 and Phys.Lett. B 497, 39 (2001) HIJING X.N.Wang and M.Gyulassy, PRL 86, 3498 (2001)

KLN

D.Kharzeev and M. Nardi, Phys.Lett. B503, 121 (2001) D.Kharzeev and E.Levin, Phys.Lett. B523, 79 (2001) Mini-jet

S.Li and X.N.Wang Phys.Lett.B527:85-91 (2002)

化学平衡と熱平衡

- ・粒子収量(比) → 化学平衡
 -化学的 freeze-out 時の情報
 - 時空発展についての、模型が必要
 - ・模型に対する強い制限
- ・粒子スペクトル → 熱平衡
 - Radial flow から、系の熱的 freeze-out 時の情報
 - 時空発展についての、模型が必要
 - ・模型に対する強い制限
- Elliptic flow → 熱平衡

- Hydro-dynamic flow model との比較

粒子スペクトル と Radial Flow

TOFによる粒子識別

STAR Particle ID

$$m_{T} \text{ scaling}$$
$$E\frac{d^{3}\sigma}{dp^{3}} = \frac{d^{3}\sigma}{m_{T}dm_{T}dyd\phi} = A(y)\exp\left[-\frac{m_{T}-m}{T}\right]$$

p-p、p-A 衝突での低い運動 量領域のスペクトル

- 粒子の種類に依らず、m_Tの
 指数関数で良く表現される
- 粒子の種類に依らず、同じ
 T

系によるスペクトルの変化

Au + Au at \sqrt{s}_{NN} = 130 (GeV)

Collective Expansion - Single particle p_T spectra -

- Simultaneous fit in range $(m_t m_0) < 1$ GeV is shown.
- The top 5 centralities are scaled for visual clarity.
- Similar fits for positive particles.

<p_T> increases with N_{part} and particle mass => radial expansion.
Consistent with hydrodynamic expansion picture.

Radial フローのモデル

AGSデータとの比較

Data from E866 exp. at 11.6 AGeV Au+Au central collision 陽子スペクトルが non-exponential shape (世界初の結果)

 $\beta_{\rm S}$ = 0.69 (0.03) n = 0.5 (0.1) T = 91.2 (2.6) MeV

Radial Flow

・ 質量の大きい粒子ほど、周辺衝突中心衝 突で勾配が穏やか

- 動径方向の系の流体力学的膨張と解釈できる

 $- T \sim T_0 + m < \beta^2 >$

 成立する条件の考察:多重散乱 σ n L_m = 1 ; σ ~ 20 - 30 mb n = n_N → L_m = 2.1 - 3.2 fm n = 4 n_N → L_m = 0.5 - 0.8 fm L_m << R (~ 7 fm), t (~ R) →近似的に熱(力学的)平衡 – 圧力 P(T,µ)、核子の平均場(外向きの力)

- 初期に熱平衡 → より強いフロー

Result of hydrodynamic model fit **PHENIX**

• β_T increases from peripheral to mid-central (N_{part} < 150) and tends to saturate for central collisions.

Flow Analysis の結果

- ・大きな膨張速度 → 高い圧力
- 初期に熱力学的平衡を達成:高温、高圧の状態