高運動量粒子生成 と Jet Quenching

Physics Target (I) -Jet quenching-

Jet will loose its energy via gluon radiation in hot dense medium, and the energy distribution of Jet will be modified

Expectations in nuclear collisions

In the absence of nuclear effects, expect point-like scaling:

$$\frac{\acute{O}_{AA}}{\acute{O}_{pp}} \propto \text{ the ratio of number of point - like sources = A2}$$
$$\frac{N_{AA}(b)}{N_{pp}} = N_{coll}; \text{number of binary collisions for a certain } b$$

 $-N_{coll} \leftarrow calculated using Glauber model$

- Previously observed effects:
 - Nuclear Shadowing
 - k_T broadening ("Cronin effect")

What to compare

We measure yield per collision for certain centrality bins

$$\operatorname{Yield}(p_{T},b) = \frac{1}{N_{\text{event}}(b)} \frac{d^{2}\acute{0}}{2\partial p_{T}dp_{T}dy}$$

• Ratios of interest:

$$\frac{\text{Yield}_{\text{central}}/\langle N_{\text{coll}}\rangle_{\text{central}}}{\text{Yield}_{\text{pp}}}$$

$$\frac{\text{Yield}_{\text{central}}/\langle N_{\text{coll}} \rangle_{\text{central}}}{\text{Yield}_{\text{peripheral}}/\langle N_{\text{coll}} \rangle_{\text{peripheral}}}$$

$p+p(\overline{p})$ Data as Reference

- Data available of large range of √s, but not for 130 GeV
- Power law fit to: $A(p_0 + p_T)^{-n}$
- Interpolate p_T to $\sqrt{s}=130 \text{ GeV}$
- → reference p+p spectrum at our √s

CERN SPS での測定

pQCD 計算との比較

 – k_T broadening を考慮する
 と良い一致が得られる

Cronin 効果

- pA 衝突での生成断面積の ターゲット依存性 _{σpA}(p_T) = σ_{pp}(p_T) A^{α(p}T⁾
 - High p_T 領域で、α (p_T) > 1

Cronin Effect at SPS Energies (Min. Bias)

- 重イオン衝突でも同様な現象
- ・パートンの多重衝突
 → k_T broadening

The device: PHENIX EMCal

Neutral Pion p_T spectra

- Suppression is quantified relative to <u>p+p</u> "baseline" scaled by <u>Number of binary collisions (N_{coll})</u>
- $\sqrt{s_{NN}}$ =130 GeV and 200GeV Au+Au data are shown
- Central collisions data are inconsistent with <u>p+p "baseline"</u> scaled by N_{coll}, while peripheral data are consistent

High p_T Neutral Pion Suppression – Comparison To Theory

- pQCD calculations:
 - P. Levai,
 Nucl.Phys.A698 (2002) 631
 - X.N. Wang,
 Phys.Rev.C61 (200)
 064910
 - I. Vitev, talk at QM2002
- so far suppression not described by theories
 - calculations without energy loss completely off
 - energy loss calculations show different p_T dependence

The Drift Chamber

Coverage: $\Delta \phi = 90^{\circ} \quad \Delta \eta = 0.7$

6 module types: X1,U1,V1,X2,U2,V2

JPS Autumn meeting at Rikkyo Univ., Sep. 10, 2002

Wide range measurement of π 's

Central to Peripheral Ratio (A variation on R_{AA})

- Should be <u>1</u> if there is NO nuclear effect
- Suppression seen in three independent measurements

Jets in p+p

Evidence for jets in Au+Au

 $C_2(Au + Au) = C_2(p + p) + A * (1 + 2v_2^2 \cos(2\Delta\phi))$ Ansatz: high p_T triggered Au+Au event is superposition of high p_T triggered p+p event and elliptic flow:

 v_2 from reaction plane analysis

A fit in non-jet region (0.75 $< |\Delta \phi| < 2.24$)

Away side jets disappear

• Use p-p analysis as a reference for Au-Au jet signal

• Correlation seen simultaneously in $\Delta \phi$ and $\Delta \eta$ (Jet Cone)

- In p_T 2-4 GeV/c, Jet-Like Signal dominates over elliptic flow component.
- This Jet-Like Signal approx. flat with centrality (no systematic

Physics Target (II) - Interplay of soft and hard processes-

- Baryon number will be transported via gluon junction to midrapidity region (Soft process)
 - Effective string tension for baryons produced gets larger than mesons
 - Another p_T kick is given to baryons
- Baryon/meson ratio will do!
 - Jet quenching (hard) enhances baryon number transport (soft) at moderate hight p_{τ} region
 - $\ \pi^{\scriptscriptstyle +}, \, \pi^{\scriptscriptstyle -} \, \text{and} \, \pi^0$ suppress, pbar and p enhance

Puzzle: Baryons at high pt

- A puzzle in high pt data: p/pbar yield is comparable or higher than pion in 3-4 GeV/c for central collision.
- If pbars are from jet fragments, pbar/π ratio should be small at high pt.
 - Peripheral collision agree with this expectation.
- How those high pt baryons are produce?
 - Very strong radial flow?
 - Gluon junction model?

hep-ex/0209030

(h⁺ + h⁻)/2 と π⁰

•(h⁺ + h⁻)/2 と π⁰ は同

じではない

- パイオンの収量が支配 的であれば正しい
- High p_T 領域では反陽子 収量が π⁰ 収量と同程度

More puzzle in pT >4 GeV/c

Proton identification not available. Use pi0 and non-identified hadrons

3D Hydro

Brief Summary of Our Hydro Results

Full 3D hydro!
 ♦ No Bjorken scaling ansatz
 ♦ No cylindrical symmetry
 ♦ (τ, η_s, x, y) coordinate

T.Hirano, Phys.Rev.C65(2002)011901.

• $T^{ch} \neq T^{th}!$

➤Suppression of radial, elliptic flow and HBT radii in comparison with the conventional hydro results.

T.Hirano and K.Tsuda, nucl-th/0205043 (Phys.Rev.C, in press).

Brief Summary of Our Hydro Results (contd.)

The Hydro+Jet Model

Time Evolution in the Hydro+Jet Model

Phenomenological Parton Energy Loss

*Neglecting energy loss in the hadron phase.

$$\rho_{\text{mixed}} = f_{\text{QGP}}(\tau, \mathbf{r})\rho(T_{\text{C}})$$
$$f_{\text{QGP}} = \frac{E(\tau, \mathbf{r}) - E_{\text{had}}}{E_{\text{QGP}} - E_{\text{had}}}$$

π⁰ Spectra in s_{NN}^{1/2}=130 GeV Central Collisions

Models for Parton Energy Loss

Incoherent model

 $\frac{dE}{dx} = 0.06\rho(\tau, x(\tau))$

•Coherent (LPM) model

A model motivated by a) GLV 1st order, or b) BDMPS for $E > E_{cr}$

 $\Delta E = a \hat{q} L_{\text{eff}}^2$, *a*: free (adjustable) parameter

"Transport" coefficient q

$$\hat{q}L_{\text{eff}}^2 = \int_{\tau_0}^{\tau_f} d\tau \rho(\tau, \mathbf{x}(\tau))(\tau - \tau_0) \log\left(1 + \frac{2E}{L\mu^2}\right) \qquad \begin{array}{l} L \sim R_{\text{Au}} \\ \mu = 0.5 \text{ GeV/c} \end{array}$$

M.Gyulassy et al., Nucl.Phys.B571(2000)197; R.Baier et al., Nucl.Phys.B483(1997)291.

Suppression Factor (PHENIX)

From D. d'Enterria, talk at QM2002.

Suppression Factor in s_{NN}^{1/2}=200 GeV Central Collisions

Suppression factor R_{AA}
Incoherent model: increase
Coherent model: almost flat
①
Experimental data (PHENIX):

 \rightarrow gradually decrease

 $R_{AA}(p_T)$ depends on the models of parton energy loss.

Back-to-Back Correlations of High p_T Hadrons

From D.Hardtke, talk at QM2002.

R_{AA} and C_2 in $s_{NN}^{1/2}=200$ GeV Central Collisions

We fail simultaneous reproduction of R_{AA} and C_2 . \rightarrow Need another mechanism

今後の課題

- 3K: 高統計、高精度、高運動量
- ・粒子の種類
 - パートンの種類: クォークの質量の違い
 - ・電磁シャワーでは、電子とミューオンの質量の 違いにより大きな差。QCD gluon
 bremstrahlung でも同様か?

・パイオンとK中間子(?)

- パートンの種類: グルーオンとクォークの 違い
 - Stopping power が違うか?
 - ・粒子・反粒子の運動量分布の N_{coll} 依存性