Direct Photons and Electrons

Direct Photons

Direct photons come from initial hot dense matter

Compton scattering of quarks and gluons: q(q)g→γq(q)
Annihilation of quarks: qq→γg
Information on Thermo-dynamical state of medium

•Initial temperature, Degree of freedom, etc.

Other sources of photons?

Decayed photons from hadronic sources

State	$Mass (MeV/c^2)$	$R_{X/\pi^0}(p_T \to \infty)$	Decay Branch	Branching Ratio
π^0	134.98		$\gamma\gamma$	98.798%
			$e^+e^-\gamma$	1.198%
η	547.3	0.55	$\gamma\gamma$	39.21%
			$\pi^+\pi^-\gamma$	4.77%
			$e^+e^-\gamma$	4.9×10^{-3}
			$\pi^0 \gamma \gamma$	7.1×10^{-4}
			$\mu^+\mu^-\gamma$	$3.1 imes 10^{-4}$
ρ^0	770.0	1.0	$\pi^+\pi^-\gamma$	9.9×10^{-3}
			$\pi^0 \gamma$	$7.9 imes10^{-4}$
ω	781.9	1.0	$\pi^0 \gamma$	8.5 %
			$\eta\gamma$	$6.5 imes 10^{-4}$
η'	957.8	0.25	$\rho\gamma$	30.2%
			$\omega\gamma$	3.01%
			$\gamma\gamma$	2.11%
K_s^0	497.7	0.4	$(\pi^0 \pi^0)$	(31.39%)
Σ^0	1192.6	1.0	$\Lambda\gamma$	100.0%

Analysis (√s_{NN}=130GeV Au+Au)

- Generate gammas from hadron sources
 - Take observed $\pi^0 p_T$ spectra
 - η, η', ρ: m_{τ} scaling of power-law fit to π^0 is applied and estimated
 - Generate Flat rapidity of -0.5<y<0.5
 - Generate p_{τ} measured or estimated
 - Decay hadrons into gammas
- Inclusive photon spectra
 - Efficiency and contamination estimated by comparing real data and simulation

tomatic Error Chausing 1 - layed

Correction or Systematics	Central	Errors to Total	Peripheral	Errors to Total
PID efficiency	88 %	$\pm 7.3\%$	98.5%	$\pm 7.3\%$
Hadron Contam. (Incl. PID eff.)	10-50%	$\pm 13.4 \%$	10-50%	$\pm 7.4\%$
Gamma Conversion loss	4 %	$\pm 2.0\%$	4 %	$\pm 2.0\%$
Nonvertex photons	6.0%	$\pm 3.0\%$	6.0%	$\pm 3.0\%$
η/π^0 ratio	0.55	$\pm 11.0 \%$	0.55	$\pm 11.0 \%$
Other hadron (η' and ω) contribution	0.4%	$\pm 0.2\%$	0.4%	$\pm 0.2\%$
η branching ratio	39.2%	0	39.2%	0
π^0 branching ratio	98.8%	0	98.8%	0
Total Systematic Errors	N/A	17.71%	N/A	13.74%

Comparison of Cluster Energy Distributions (I)

 $\sqrt{s_{NN}} = 130 \text{GeV Au} + \text{Au}$

- <u>60-80% Central Events</u>
- Comparison between measured and calculated energy spectra
- Systematic error bans(Cvan)
 Measured inclusive photons are consistent with contributions from known hadronic

sources!

Comparison of Cluster Energy Distributions (II)

 $\sqrt{s_{NN}} = 130 \text{GeV Au} + \text{Au}$

- <u>0-10% Central Events</u>
- Systematic error bands (Cyan)

Measured inclusive photons are yet not inconsistent with contributions from known hadronic sources within current systematic errors

Photon Result $-\sqrt{s_{NN}}=200 \text{GeV}$ Au+Au- $(\gamma/\pi^0)_{\text{measured}}/(\gamma/\pi^0)_{\text{simulated}}$: Peripheral

- Plotted are ratios of photons to π⁰
- Denominator:
 - Photons calculated from hadronic sources
- Numerator:
 - Inclusive photons measured

Measured inclusive photons are yet not inconsistent within current systematic errors..

Single electron and Charm

Charm measurement

Direct method:

 π^+

Reconstruction of D-meson(e.g. $D^0 \rightarrow K\pi$).

Very challenging without measurement of displaced vertex

Indirect method: Measure leptons from semileptonic decay of charm. **This method is used by PHENIX at RHIC**

Single electron in RUN-1(130GeV)

- Inclusive electron spectra are measured at y=0
- The background from π^0 Dalitz, photon conversions, etc are estimated and subtracted.
- Observe excess over background in pt>0.8 GeV/c

PRL 88, 192303

Background-subtracted single electron spectra

- Background subtracted electron spectra are compared with the charm decay contribution.
- Charm decay contribution is calculated as
 - $EdN_e/dp^3 = T_{AA}Ed\sigma/dp^3$
 - T_{AA} : nuclear overlap integral
 - Ed\sigma/dp³: electron spectrum from charm decay calculated using PYTHIA
- From the single electron yield in pt>0.8 GeV/c, charm cross section per binary collision is obtained as

 $σ_{cc}$ = 380±60±200 μb

Comparison with other experiments

- PHENIX single electron cross section is compared with the ISR data
- Charm cross section derived from the electron data is compared with fixed target charm data
- Solid curves:
 PYTHIA
- Shaded band: NLO pQCD

RUN2 single electron result

- The yield of non-photonic electron at 200 GeV is higher than 130 GeV
- The increase is consistent with PYTHIA charm calculation $(\sigma_{cc}(130 \text{GeV})=330 \ \mu\text{b} \rightarrow \sigma_{cc}(200 \text{GeV})=650 \ \mu\text{b})$

Centrality Dependence

Observations

• PHENIX single electron data are consistent with *binary scaling* within current statistical and systematic errors.

• Both errors will be much reduced in final RUN-2 result

• NA50 has inferred a factor of ~3 charm *enhancement* at lower energy. We do not see this large effect at RHIC.

• PHENIX observes a factor of ~3-5 *suppression* in high $p_T \pi^0$ relative to binary scaling. We do not see this large effect in the single electrons.

- Initial state high pt suppression is excluded?
- smaller energy loss for heavy quark ? (dead cone effect)

J/ψ Suppression

J/Ψ measurement

ベクトル中間子(Vector Meson)												
 スピン=1、パリティ=-1:光子と同じ量子数 												
・ クォーク・反クォーク ポジトロニウムと似												
た系												
• 重いクォーク → 古典的 $V_c = \frac{q}{4\pi r}$ $V_{linear} = \kappa r$	harmoniumのパラ	メータ 26 GeV/f 8 GeV/fn	ーセット fm, m _c = 1 n, m _c = 1.6	.84 GeV 65 GeV								
$H = \frac{p^2}{2} - \frac{\alpha_{eff}}{2} + \kappa r$												
2m r	重い vector r	重い vector mesons										
$\alpha_{eff} = \frac{q^2}{4\pi} \left(= \frac{4}{3} \alpha_s \right) \qquad q^2 = \frac{4}{3} q^2$		J/ψ	Ψ'	Υ								
	composition	cc	cc	bb								
	Mass (GeV)	3.10	3.69	9.46								
	Γ (keV)	87	277	53								
	Γ_{ee} (keV)	5.26	2.14	1.32								
Confined	r (fm)	0.29	0.56	0.13								

1/(α_{eff} μ λ_D) > 0.84 では束縛状態が存在しない

r_{Bohr} = 1 / α_{eff} μ (λ_D = ∞ : クーロンポテンシャルでのBohr半径) 1.19 r_{Bohr} > λ_D

$$\lambda_{\rm D} (PQCD) = \frac{1}{T} \frac{1}{\sqrt{\left(\frac{N_c}{3} + \frac{N_f}{6}\right)g^2}} = \sqrt{\frac{2}{3}} \frac{1}{gT} \quad (N_c = 3, N_f = 3)$$

= 0.36 fm at T = 200 MeV : $g^2 = 4\pi\alpha_{eff}, \alpha_{eff} = 0.52$
 $\lambda_{\rm D} (\text{Lattice - QCD}) \sim 0.5\lambda_{\rm D} (PQCD), \quad r_{Bohr} = \frac{1}{\alpha_{eff}\mu} \sim 0.4 \text{ fm} : \mu = 1840/2 \text{ MeV}$

$$T_X = \frac{\mu}{0.840} \sqrt{\frac{2\alpha_{eff}}{9\pi}} = 0.291 \sqrt{\alpha_{eff}} \text{ (GeV)}$$

charm: $\alpha_{\text{eff}} = 0.30 \rightarrow \text{Tx} = 143 \text{ MeV}$

 $\alpha_{\text{eff}} = 0.52 \rightarrow \text{Tx} = 209 \text{ MeV}$

bottom: Tx = (4.73/1.84) x 143 = 368 MeV

- J/ψは100~200MeV程度で溶解する
- Ψ' はJ/ψよりも低い温度で溶解する(半径が大)
- Yの溶解温度は非常に高い
- ρ, ω, φ (質量が小さい)はQGPでは存在し得ない

J/ψの最初の測定

CERN-SPS NA38 (NA50)
muon 対の測定
200 AGeV O, S + A
J/ψ vs E_T
E_T: 横放出エネルギー
=中心衝突の度合い
強い J/ψ Ψ' suppressionが
大きな E_T で観測された

J/ψ と連続スペクトルの収量比は エネルギー密度 ε の増加とともに減少 ε = E / V ~ (dE_T/dy)/ (πr₀²A^{2/3}τ₀)

Ψ'収量の変な振る舞い

Ψ'と J/ψの振る舞い

- p+Aではよく似ている
- S + A, Pb + Pb では、 J/ψ に比べてΨ' 収量は大きく suppress される

Pb + Pb 衝突での J/ψ Suppression

強い suppression

 p+A、S+Aで見られた幾何学 的な系統性から大きくずれ る

二つのパズルを解く

- ψ'の S+U での振る舞い
- J/ψのPb+Pbでの振る舞い

ひとつの解釈

- ψ'は比較的低い温度で溶解する
 S+Uで既に溶解
- J/ψ はPb + Pbで溶解:
 - → Pb+Pbで温度が上がる

RHICでは

- より高い温度状態が期待される
- SPSではできなかった Y の測定が可能
 → よりはっきりした結論

 $pp \rightarrow J/\Psi$ at 200 GeV

 $pp \rightarrow e^+e^-X (|y| < 0.35)$

 $pp \rightarrow \mu^+\mu^- X (1.2 \le y \le 2.2)$

• $pp \rightarrow J/\Psi$ is measured both in ee and in $\mu\mu$

J/ Ψ Bd σ /dy in p+p(200GeV)

 $B \cdot \sigma(pp \rightarrow J/\psi + X) = 226 \pm 36(stat) \pm 79(sys) \text{ nb}$ $\sigma(pp \rightarrow J/\psi + X) = 3.8 \pm 0.6(stat) \pm 1.3(sys) \ \mu\text{b}$ nucl-ex/0210013

Comparison with lower energy

PHENIX data at s^{1/2}=200 GeV

$J/\psi \rightarrow e^+e^-$ in Gold-Gold

- From 26 M min. bias Au+Au collision @ 200 GeV (1/2 – 1/3 of all data)
- $N_{J/\psi}$ in 3 centrality bins.
 - **0-20%:**
 - $5.9 \pm 2.4(stat) \pm 0.7(sys)$
 - **20-40%:**
 - $4.5 \pm 2.1(stat) \pm 0.5(sys)$
 - **40-90%:**

 3.5 ± 1.9 (stat) ± 0.5 (sys)

J/ψ B-dN/dy per binary collision

nucl-ex/0210013

Model Comparisons (1)

- (1) J/ ψ scale with the number of binary collisions
- (2) J/ ψ follow normal nuclear absorption with σ_{J-N} =7.1 mb
- (3) J/ ψ follow same pattern as NA50 (J/ ψ / DY(mb))¹

Due to low statistics, our data are compatible all of these models.

nucl-ex/0209015

Model comparion(2) J/ Ψ re-generation models

- At RHIC, about 10 ccbar pairs produced in central event.
- They can recombine to form J/Ψ. Those models that assume formation of J/Ψ inside of QGP predict enhanced production of J/Ψ in Au+Au.
 PHENIX data does not favor a large

PHENIX data does not favor a large enhancement.

- In QGP suppression model, very strong J/Ψ suppression at RHIC is expected.
 PHENIX data does not favor a very strong suppression.
- Models of statistical generation of J/Ψ at hadronization stage predict that J/Ψ yield in central Au+Au is about half of that of pp.

A much larger statistics is required to test those models. (\rightarrow RUN4)

Theory curve from R. L Thews, PRC63,054905

L. Grandchamp and R. Rapp, hep-ph/0209141

カイラル対称性

- ・カイラル対称性とは
- 実験研究

QCD 真空の 性質

QCD真空は完全反誘電性

$$\varepsilon(k) \sim 1 - \frac{C}{\ln(k^2 / \Lambda^2)} \quad (k^2 \to \infty)$$
$$\sim \frac{k^2}{m_L^2} \qquad (k^2 \to 0)$$

$\mathsf{D}=\epsilon\mathsf{E}$

外場Eをかけても内部場D=0

真空凝縮

$$\left\langle \overline{q}q \right\rangle_0 = -\frac{f_\pi^2 m_\pi^2}{2m_q} = (-225 \pm 25 \text{ MeV})^3$$
$$\left\langle \frac{\alpha_s}{\pi} G^a_{\mu\nu} G^{\mu\nu}_a \right\rangle_0 = (350 \pm 30 \text{ MeV})^4$$

真空凝縮

QCD真空は、あたかも物性(多体系)の特別な状態

- ・ 強磁性体:ハミルトニアンH=-gΣs_i・s_jは回転対称性を持つが、
 基底状態では対称性が破れている。臨界温度T_cで復活。
- 超伝導体: Cooper pair の凝縮 <ψ↑ψ↓> ≠ 0で、Lagrangian L の対 称性が破れる。高温、高磁場で復活。

 L_{BCS} は、 $\psi \rightarrow e^{i\theta}\psi$ に対して不変

pair $\mathcal{O} \mathcal{T}^{\mathcal{O}} \mathcal{V} - \mathcal{P} - \psi_{\uparrow} \psi_{\downarrow} : \psi_{\uparrow} \psi_{\downarrow} \rightarrow \psi_{\uparrow} e^{2i\theta} \psi_{\downarrow}$

Lの持つ対称性を持たないoperator = order parameter

- order parameterの真空期待値:真空の対称性の判定基準
- QCD真空: qq の pairing による凝縮、高温、高密度で回復。
 カイラル対称性が破れている。

 L_{OCD} は、 $\psi \rightarrow e^{i\gamma_5 \theta} \psi$ に対して不変

pair のオペレーター $\overline{\psi}\psi$: $\overline{\psi}\psi \rightarrow \overline{\psi}e^{2i\gamma_5\theta}\psi$

order parameter

カイラル対称性の Order Parameter

ハドロンの質量

QCD真空の対称性の破れにより動的に形成

高温、高密度

→真空状態が変化

→ハドロンの性質に影響

「カイラル対称性の回復」研究の方 法

ハドロンの媒質効果 - 高温、高バリオン密度状態の物質中に置かれたハ ドロンの性質の変化を調べる

- 注目: low-mass ベクターメソン $\rho^0 \omega \phi$
 - 質量がカイラル対称性のオーダーパラメータに比 $M_{m \propto \langle \overline{q}q \rangle}$
 - レプトン対崩壊
 - ・分岐比は小さい
 - ・メディアの影響小

「カイラル対称性回復」の実験的研 究

原子核中での媒質効果

- KEK PS : $\phi \rightarrow e^+e^-$, K⁺K⁻
- (旧) INS ES : $\rho \rightarrow \pi^+ \pi^-$
- Spring-8 : $\phi \rho \rightarrow e^+e^-$
- GSI : $\rho \rightarrow e^+e^-$

RHIC PHENIX

 $-\rho \omega \rightarrow e^+e^-$

 $- \phi \rightarrow e^+e^-$, K⁺K⁻

高温状態での媒質効果

• CERN-SPS CERES実験: $\rho \omega \rightarrow e^+e^-$

原子核の内部で生成された場合

KEK-PSでの実験

- p+A 反応における生成電子対の測定
- ・軽いターゲットと重いターゲットで、
 不変質量分布に顕著な差

CERN-SPS CERES 実験

ひとつの説明: ρメソンのカイラル対称性復活

ρ⁰ → e+e- 収量が重イオン衝突で増加 短い寿命(~1.3 fm) → 高温状態で熱平衡

 $\rho^{0} \leftrightarrow \pi^{+}\pi^{-}$ $N(\rho^{0} \rightarrow e^{+}e^{-}) \propto \Delta t($ 系の持続時間)

ベクターメソンの収量

 ・高温熱平衡状態 → 持続時間 △T の後に freeze-out

• ベクターメソンV
- 寿命 =
$$\tau$$
、 e+e-分岐比 = B
- 熱平衡: 個数 N_V 一定(崩壊分は直ちに補われる)
 $n(V \rightarrow e^+e^-) \sim \int_0^{\Delta T} \frac{BN_V}{\tau} dt + \int_{\Delta T}^{\infty} \frac{BN_V}{\tau} e^{-(t-\Delta T)/\tau} dt$
 $= \frac{\Delta T}{\tau} BN_V + BN_V = BN_V (1 + \frac{\Delta T}{\tau})$
 $\tau >> \Delta T \rightarrow n \sim BN_V$
 $\tau << \Delta T \rightarrow n \sim BN_V \Delta T/\tau$

