

Systematic Study of Identified Particle Production in PHENIX

Masahiro Konno Univ. of Tsukuba, for the PHENIX Collaboration

QM2005 Budapest, Hungary

1

- Physics Motivation
- Method
- New Data Set: Cu+Cu 200GeV
- Results and Comparisons:
 - Baryon Enhancement
 - Energy dependence
 - N_{part} Scaling (Particle Ratio)
 - N_{part} Scaling (R_{AA})
- Summary

Physics Motivation

PHENIX: PRL 91, 172301 (2003), PRC 69, 034909 (2004)

- Strong suppression of π^0 yields above $p_T \stackrel{a}{\sim} 2$ GeV/c at RHIC, but no suppression for proton and antiproton at intermediate p_T (2-5 GeV/c): "Baryon Anomaly at RHIC".
- The possible explanations: Quark recombination, Baryon junction, Strong radial flow ...

```
For Systematic Study:
```

Energy dependence
62.4 GeV vs. 200 GeV (Au+Au)
System Size dependence
Cu+Cu vs. Au+Au (200 GeV)

Method: Charged Hadron PID

Time of Flight (σ=120ps)

Aerogel Cherenkov

New Data Set: Cu+Cu 200 GeV

Cu+Cu 200 GeV PH ENIX

- Flat p_T dependence for pions, kaons.
- Slightly decreasing with p_T for protons.
- Flat centrality dependence also seen (0-60%).

QM2005 Budapest, Hungary

Baryon Enhancement

 p/π^+ vs. p_T

- Weaker centrality dependences (62GeV) than those of 200 GeV.

NOTE: No weak decay feed-down correction applied.

- Less for antiproton compared to proton for all systems
- Significant difference for p and pbar at 62 GeV

(Indicating more baryon transport and less p-pbar pair production at 62 GeV than 200 GeV.)

NOTE: No weak decay feed-down correction applied.

Energy dependence

Antibaryon/ baryon ratios vs. √s_{NN} PH ENIX

- Follow the smooth curve from SPS to RHIC.

- Consistent with Λ bar/ Λ (STAR preliminary) at 62 GeV.

NOTE: No weak decay feed-down correction applied.

dN/dy per N_{part} pair: smooth energy dependence from SPS to RHIC.

- K⁺/ π^+ : similar to SPS top energy.

16

N_{part} Scaling (Particle Ratio)

N_{part} Scaling (R_{AA})

NOTE: No weak decay feed-down correction applied. QM2005 Budapest, Hungary

Summary

Energy dependence:

62.4 GeV vs. 200 GeV (Au+Au)

- Observed a large proton contribution at intermediate p_T , as seen in 200 GeV data, but less for antiprotons.
- Antiproton-to-proton ratio is ~0.5 at 62 GeV, which indicates less p-pbar pair production and relatively larger baryon transport than 200 GeV.
- Smooth excitation function for both yields and ratios from SPS to RHIC.

System Size dependence:

Cu+Cu vs. Au+Au (200 GeV)

- Observed a large p,pbar contribution at intermediate p_T , as seen in 200 GeV data.
- N_{part} dependences on particle ratios have similar trend as in Au+Au (N_{part} scaling).
- Similarity on R_{AA} seen in Cu+Cu and Au+Au (System size):
 - the magnitude and its particle dependence.

Fitted by m_{T} exponential function.

- Fit range:
- π: 0.3(0.2) 1.0 GeV/c².
- p and K: 0.2(0.1) 1.0 GeV/c².

Extracted inverse slopes

Rcp of Lambdas is similar to protons

QM2005 Budapest, Hungary

26

p_T Spectra

Au+Au 62 GeV

Au+Au 62 GeV PH^{*}ENIX

-/+ Ratios (Centrality dep.)

Au+Au 62 GeV

