Elliptic flow of electron from heavy flavor decay by the PHENIX

> Shingo Sakai for PHENIX collaboration (Univ. of Tsukuba & JPSP)

Outline

- Physics motivation
- Method
- Result
- Compare with models
- Summary

Charm is produced in initial collisions via gluon fusion and propagates through medium

=> good probe for studying property of the medium

 \Box v₂ and R_{AA} measurement are useful analysis method

- Large energy loss has been observed. => talked by F. kajihara
- □ How about charm flow ?

=> indicate strongly coupling & quark level thermalization $v_2 \& R_{AA}$ are related to the diffusion coefficient D and η /s $D \propto \eta/(sT)$

Charm via electron measurement

- Electron is one of the good probe of charm
- Electron sources
 - photonic
 - photon conversion
 - Dalitz decay ($\pi^{\,0}$, η , ω ---)
 - non-photonic
 - Ke3 decay
 - primarily semi-leptonic decay of mesons containing c & b

Photonic electron subtraction

Cocktail subtraction

photonic electrons are calculated as cocktail of each sources. [PRL 88, 192303 (2002)]

Converter subtraction

Photonic electrons are extracted experimentally by special run with additional converter (X = 0.4 + 1.7%)[PRL 94, 082301 (2005)]

50 % of e come from non- γ @ high pT (>1.5 GeV/c)

* Details about spectra analysis ; F. Kajihara's talk

Non-photonic electron v₂ measurement

Non photonic electron v_2 is given as;

 $v_2^{\gamma.e}$; Photonic electron v_2

- ⇒ Cocktail method (simulation) stat. advantage
- \Rightarrow Converter method (experimentally)

Electron ID @ PHENIX

Electron ID
 RICH ; electron ID
 EMC ; measure E
 request E/p matching

Inclusive electron v₂

inclusive electron v₂ measured w.r.t reaction plane
 converter --- increase photonic electron
 photonic & non-photonic e v₂ is different

Photonic e v₂ determination

Non-photonic electron v₂

Strong elliptic flow for non-photonic electron
 Main source is D meson -> indicate non-zero D v₂
 Charm v₂ also non-zero ?

Non-zero charm v_2 ? (1)

Apply recombination model
 Assume universal v₂ (p_T) for quark

simultaneous fit to v_2^{π} , v_2^{K} and $v_2^{non-\gamma e}$

Non-zero charm v_2 ? (2)

χ² minimum ; a = 1, b = 0.96 (χ²/ndf = 21.85/27) —
 Based on this recombination model, the data suggest non-zero v₂ of charm quark.

Compare with models

=> Charm quark strongly coupled to the matter

Comparison with models; R_{AA} & v₂

- Two models describes strong suppression and large v₂
 - Rapp and Van Hees

 Elastic scattering
 -> small τ
 D_{HQ} × 2πT ~ 4 6

 Moore and Teaney

 D_{HQ} × 2πT = 3~12
- These calculations suggest that small τ and/or D_{HQ} are required to reproduce the data.

Nucl-ex/0611018

Constraining η /s with PHENIX data

Rapp & Hees private communication 7 Rapp and van Hees Phys.Rev.C71:034907,2005 6 Simultaneously describe PHENIX Ο $R_{AA}(E)$ and $v_2(e)$ with diffusion ് 4 coefficient in range $D_{HQ} \times 2\pi T \sim 4-6 \frac{1}{5}$ З charm-quark diffusion in QGP 2 Moore and Teaney Phys.Rev.C71:064904,2005 pQCD+reso Γ=0.4...0.75 GeV 1 Find $D_{HO}/(\eta/(\epsilon+p)) \sim 6$ for $N_f=3$ Ο 0 0.35 0.2 0.25 0.3 0.4 Calculate perturbatively, \bigcirc T (GeV) Moore & Teaney private communication argue result also plausible D / [ŋ/(e⁄4p)] non-perturbatively N₄=0 (b) Combining Recall ϵ +p = T s at μ_B =0 Ο N_f=2 This then gives $\eta/s \sim (1.5-3)/4\pi$ Ο N,=3 N,=6 That is, within factor of 2 of \mathbf{O} conjectured bound

 $m_{\rm D}/T$

Summary

- Non-photonic electron v_2 mainly from charm decay was measured @ $\sqrt{s} = 200$ GeV in Au+Au collisions at RHIC-PHENIX & non-zero v_2 is observed
- The data suggest non-zero v_2 of charm quark.
- Charm quark strongly coupled to the matter
- Model comparison suggests
 O small τ and/or D_{HQ} are required
 Ο η /s is very small, near quantum bound.

Thanks!

Additional Remarks

- What does $D_{HQ}/(\eta/(\epsilon+p)) \sim 6$ mean?
 - Denominator:
 - D_{HQ} is diffusion length ~ heavy quark diffusion length λ_{HQ}
 - Numerator:
 - Note that viscosity $\eta \sim n \lambda$
 - o n = number density
 - = mean (thermal) momentum
 - λ = mean free path
 - "Enthalpy" ε + P ~ n
 - Here P is pressure
 - So $\eta/(\epsilon+P) = (n \lambda) / (n) ~ \lambda$
 - Note this λ is for the **medium**, i.e., light quarks
 - Combining gives $D_{HQ}/(\eta/(\epsilon+p)) \sim \lambda_{HQ} / \lambda$
 - Not implausible this should be of order 6

Notes

- Above simple estimates in Boltzmann limit of well-defined (quasi)-particles, densities and mfp's
- The "transport coefficient" $\eta/(\epsilon+p)$ is preferred by theorists because it remains well-defined in cases where Boltzmann limit does not apply (sQGP?)

Outlook for heavy flavor v₂ study @ PHENIX

new reaction plane detector

 good resolution => reduce error from R.P.
 J/ψ v₂ & high pT non-photonic electron v₂

 silicon vertex detector

 direct measurement D meson v₂

[Silicon vertex detector]

[Reaction plane detector]

Line on the figure ; D->e v2 - v2,u (pT) = v2,c (pT)

 $-v_{2}$,D (pT) = v_{2},u(1/6pT) + v_{2},c(5/6 pT)

If charm & u has same v2, the maximum v2 = 0.1

=> Non-photonic electron v2 is smaller than pi (pi0) v2

Converter method

install "photon converter "
 (brass ;X₀ = 1.7 %) around beam pipe

increase photonic electron yield

Compare electron yield with & without converter

experimentally separate

Non-converter ; $N_{nc} = N_{\gamma} + N_{non-\gamma}$ Converter ; $N_c = R\gamma * N_{\gamma} + N_{non-\gamma}$

Cocktail method

estimate background electron with simulation

sum up all background electrons

Input

- π⁰ (dominant source) use measured pT @ PHENIX
 other source assume mt scale of pi
- clear enhancement of inclusive electron w.r.t photonic electron

