

Shingo Sakai for PHENIX Collaborations (Univ. of Tsukuba JSPS)

Elliptic flow (v2)

Elliptic flow

 $dN/d\phi \propto N_0(1+2v_2\cos(2\phi))$

A powerful probe of the initial state of the high energy heavy ion collision

transfer initial spatial anisotropy to momentum space anisotropy

macroscopic ; hydro model

 pressure gradient

 microscopic

 scattering in the medium

v₂ already developed in partonic phase ?

- identified hadrons v₂ after scaling pT and v2 number of quarks
- v2 after scaling fall on same curve
- v2 already formed in the partonic phase for hadrons made of light quarks (u,d,s)
- => partonic level v2

charm quark also flow @ RHIC ?

Charm quark

 Charm is believed to be produced in initial collisions via gluon fusion
 total cross-section ; binary scaling (N_{coll})

 Charm propagates through medium created in the collisions
 => good probe of medium

initial charm v2 might be 0

=> charm quark v2 due to scattering in medium

=> non-zero charm v2 indicate very high dense medium created in the collision and quark level thermalization

Charm quark study @ PHENIX

Subtract photonic electrons following methods

 "Cocktail subtraction" – calculation of "photonic" electron background from all known sources
 "Converter subtraction" – extraction of "photonic" electron background by special run with additional converter (brass, X = 1.7%)

Charm quarks interact with medium ?

- non-photonic electron R_{AA}
- clear suppression @ high pT in more central collisoion (R_{AA} < 1.0)

=> one of the evidence charm quarks interact with the medium

 low pT and peripheral collision (centrality > 40 %)
 is consistent with binary scale

v2 measurement (pT,cent) gives us additional info. of the interaction between charm and the medium

Electron v2 measurement @ PHENIX

Electron v_2 is measured by R.P. method

 $dN/d(\phi-\Phi) = N (1 + 2v_2^{obs} cos(2(\phi-\Phi)))$

R.P. --- determined with BBC
 Tracking (pT, \(\phi\)) --- DC + PC
 electron ID --- RICH & EMCal

Fig : Energy (EMcal) & momentum matching of electrons identified by RICH. Clear electron signals around E/p-1 = 0

Non-photonic electron v2 measurement

Non photonic electron v2 is given as;

$$dN_{e}/d\Phi = dN_{pho.e}/d\Phi + dN_{non-pho.e}/d\Phi$$

$$= \left\{ \frac{V2^{e}_{non-\gamma}}{(1+R_{NP})} + \frac{V2 - V2^{e}_{\gamma}}{(1+R_{NP})} \right\} / R_{NP}$$

$$= \left\{ \frac{V2^{e}_{non-\gamma}}{(1+R_{NP})} + \frac{V2 - V2^{e}_{\gamma}}{(1+R_{NP})} \right\} / R_{NP}$$

$$= \left\{ \frac{V2^{e}_{non-\gamma}}{(1+R_{NP})} + \frac{V2 - V2^{e}_{\gamma}}{(1+R_{NP})} \right\} / R_{NP}$$

$$= \left\{ \frac{V2^{e}_{non-\gamma}}{(1+R_{NP})} + \frac{V2 - V2^{e}_{\gamma}}{(1+R_{NP})} \right\} / R_{NP}$$

$$= \left\{ \frac{V2^{e}_{non-\gamma}}{(1+R_{NP})} + \frac{V2 - V2^{e}_{\gamma}}{(1+R_{NP})} \right\} / R_{NP}$$

$$= \left\{ \frac{V2^{e}_{non-\gamma}}{(1+R_{NP})} + \frac{V2 - V2^{e}_{\gamma}}{(1+R_{NP})} \right\} / R_{NP}$$

$$= \left\{ \frac{V2^{e}_{non-\gamma}}{(1+R_{NP})} + \frac{V2 - V2^{e}_{\gamma}}{(1+R_{NP})} \right\} / R_{NP}$$

$$= \left\{ \frac{V2^{e}_{non-\gamma}}{(1+R_{NP})} + \frac{V2 - V2^{e}_{\gamma}}{(1+R_{NP})} + \frac{V2^{e}_{\gamma}}{(1+R_{NP})} \right\} / R_{NP}$$

$$= \left\{ \frac{V2^{e}_{non-\gamma}}{(1+R_{NP})} + \frac{V2^{e}_{\gamma}}{(1+R_{NP})} + \frac{V2^{e}_{\gamma}}{($$

Determined photonic electron v2 with simulation

Inclusive electron v2 (in/out converter)

difference between converter in / out => photonic & non-photonic e v2 is different

Inclusive electron & photonic electron v2

Non-photonic electron v₂

Non-photonic electron v2 : pT < 1.0 (conv.) & pT>1.0 (cock.)
 Non-photonic electron v2 has non-zero v2

Non-photonic electron v2 (centrality dep.)

 \square non-photonic electron v₂ seems like getting larger with centrality

Compare with R_{AA}

 $R_{AA} \sim 1.0$ @ peripheral collision but v₂ still non-zero indicate charm quarks interact with medium not only central but also peripheral 2006/6/4

D meson flow ?

electron v₂ from D meson decay well reflect parent v₂
 <u>non-zero</u> non-photonic electron v₂ suggest D meson also flow @ RHIC

expected D v_2 from non-photonic e v_2

- expected D meson v2 from non-photonic electron v2
 - □ smaller than pi v2
 - Iarger than Deuteron v2 "<u>if D v2 shape same as pi, k, p</u>" Mass D meson~ Mass Deuteron

Charm quark flow ?

without charm flow Au+Au@\s,,,,=200GeV 0.25 Min Blas Compared with quark non photonic e⁺+e with charm flow 0.2 PHENIX preliminary coalescence model prediction. with/without charm quark flow 0.15 (Greco, Ko, Rapp: PLB 595 (2004) 202) 0.1 - No Bottom contribution - c v2 small u v2 @ low pT 0.05 - quark v2 flat @ high p_T 0 Below 2.0 GeV/c ; -0.05 consistent with charm quark -0.1 3.54.5 flow model. pT[GeV/c] => favor charm quark flow model 0.2 assume c v2 < u v2 @ low pT</p> 0.15=> mass effect in partonic level ? 0.1 0.05 3 pT[GeV/c]

∾ 0.3

B meson contribution ?

- B meson contribution is model dependent now but the contribution is getting larger at high pT.
- electron v2 from B meson is smeared due to large mass difference => high pT single electron v2 is getting smaller ?

Near future

Summary

- Non-photonic electron v₂ from heavy flavor decays has been measured with RHIC-PHENIX
- Non-photonic electron v2 has non-zero v2
 => indicate non-zero D meson v2
- Clear centrality dependence of non-photonic e v2
- Compare with model calculation with charm flow (c v2 < u v2)
 => consistent with charm flow model below 2.0 GeV/c
 => mass effect in partonic level ?
- Estimate D meson v2 from non-photonic electron v2 assuming D meson v2 shape same as pion, Kaon, proton.

Converter method

Separate non-photonic & photonic e v2 by using Non-converter run & converter run

 $\begin{cases} \text{Non-converter ; } N_{\text{nc}} = N_{\gamma} + N_{\text{non-}\gamma} \\ \text{Converter ; } N_{\text{c}} = R\gamma * N_{\gamma} + N_{\text{non-}\gamma} \end{cases}$

$$\implies \begin{cases} (1+R_{NP})v2_{nc} = v2_{\gamma} + R_{NP}v2_{non-\gamma} \\ (R\gamma + R_{NP})v2_{c} = R\gamma v2_{\gamma} + R_{NP}v2_{non-\gamma} \end{cases}$$

 $R\gamma$ --- ratio of electrons with & without converter (measured) R_{NP} --- non-photonic/photonic ratio (measured) $v2_{nc}$ --- inclusive e v2 measured with non-converter run (measured) $v2_{c}$ --- inclusive e v2 measured with converter run (measured)

v2_{non-γ}(non-photonic) & v2_γ(photonic) is "experimentally" determined !

Cocktail method

Determined photonic electron v2 with simulation Then subtract it from electron v2 measured with non-converter run

$$dN_e/d\Phi = dN_{pho.e}/d\Phi + dN_{non-pho.e}/d\Phi$$

- R_{NP} --- non-photonic/photonic ratio experimentally determined v2 --- inclusive electron v2 (without converter)
- $v2_{\gamma}$ --- photonic electron v2calculated from pi0 (pion) v2

D-> e v2

D v2 estimate from non- γ e v2 (2)

New reaction plane detector

