

FAQ: is it the QGP inside proton?

✓Asymptotic freedom means a QGP inside a proton?

⇒No!

- ✓We want many free quarks and gluons over a large volume as a matter.
- Applicability of Statistical Physics is essential!

PHOBOS BRAHMS RHIC ENIX PH Series of measurements; Au+Au collisions at vs_{NN} = 200 GeV as highest & largest (240 µb⁻¹) AGS Au+Au at $\sqrt{s_{NN}}$ = 19.6, 130, 200 GeV as Energy Scan p+p at $\sqrt{s_{NN}}$ = 200 GeV as Comparison data d+Au vs_{NN} = 200 GeV as Controlled Comparison

Time Evolution of collision

Time evolution which we expect.

- Parton cascade
- Quark Gluon Plasma
- Chemical freeze-out
 - ➡no more hadron produced
- Kinematical freezeout
 - no more scattering
- If the beam energy is high enough, we think observable to be Lorentz invariant.

Npart VS Nbinary

✓ For comparison with pp or dAu also for centrality study, we need scaling variables.

 $\sqrt{N_{part}};$

- # of participant nucleons
- Particle production in hA is known to be proportional to N_{part}. (Wounded-Nucleon Model)

√N_{binary};

- # of binary nucleon-nucleon collisions
- Pass through at high energy.

✓ Evaluation of N_{part} & N_{binary} by Glauber Model.

Particle production (total mult.)

- ✓ Total multiplicity per N_{part} stays constant.
 - WNM holds even at RHIC.
 - Slight deviation at higher collision energies.
- ✓ Deviation from N_{part} scaling more visible at mid-rapidity.

Kinematical & Chemical freeze-out show difference in centrality dependence! Kinematical: Tkin^{cent.} (Tkin^{per.} (Tch Freeze-out with $\lambda \sim R$ Chemical : Tch^{cent.} ~ Tch^{per.} ~ 160 MeV Freeze-out with T~ Tcrit ✓Nature of Freeze-out Kinematical freeze-out is collisional, while chemical is not. 16

SCIENTIFIC AMERICAN

MAY 2006 WWW.SCIAM.COM

Quark Soup Physicists re-create

THE LIQUID STUFF OF THE EARLIEST UNIVERSE

What is Jet ?

- ✓ At ISR in 1972, deviation from the mt scaling at high pt region is observed as a first time.
- Sinary parton scattering followed by fragmentation produces back-to-back jet.
- ✓ Origin of high pt particles in elementary particle collisions.

Comparison of Au+Au and pp

- ✓ For comparison, Au +Au & pp spectra scaled by N_{binary}.
- ✓ In peripheral collisions,
 Au+Au ~ pp
- √In central collisions, Au+Au < pp
 - Suppression of yield?
 - Loss of p_T?

Jet Quench?

 \checkmark We have seen partonic matter, ie, a QGP!

- ✓ Successful description of the system in terms of statistical thermo-dynamics;
 - +Particle ratios in Tch, μ , Kinematical distr. in Tth and β
- ✓Partonic
 - Large azimuthal anisotropy cannot be created with hadronic process.
 - High pt suppression and disappearance of back-to-back is at parton level.
 - Successful description of quark recombination;
 - Phenomenological, but universal quark distribution function!

Ve are in the state of studying property of plasma, like cs. Fall 2007, JPS @Sapporo