Scaling Properties of Identified Hadron Transverse Momentum Spectra in Au+Au and Cu+Cu Collisions at RHIC-PHENIX

Masahiro Konno
for the PHENIX Collaboration
(University of Tsukuba)
Hadron production in heavy ion collisions at RHIC

- Hadron production mechanisms:
 - Thermal emission
 - Quark recombination
 - Jet fragmentation

- Bulk properties of the system:
 - Thermalization
 - Collective flow
 - Freeze-out (Chemical, Kinetic)

- High-\(p_T\) phenomena in the medium:
 - Jet quenching (Energy loss)
 - Particle correlation of jets

- Single particle spectra and particle ratios provide the most basic observables to investigate the mechanisms of hadron production.

- Particle Identification (PID) over wide \(p_T\) range is also crucial.
Hadron production at intermediate p_T

- Baryon/meson difference at intermediate p_T (2~5 GeV/c)
 - Baryon enhancement in particle ratios
 - Splitting of v_2 strength into baryon/meson groups
- Now explained in quark recombination picture
- A transition from soft to hard production at intermediate p_T

What is the next?

Purposes:
- Relative contributions of hadron production mechanisms (soft/hard)
- Scaling properties of identified hadron p_T spectra in different collision systems.
- Systematic scan over different collision systems (colliding species, beam energies) with available data obtained at PHENIX.

(Au+Au, Cu+Cu at $\sqrt{s_{NN}} = 62.4, 200$ GeV)

Iniv. of Tsukuba)
- Central Arm Detectors
- Centrality and Reaction Plane
determined on an E-by-E basis.
- PID (particle identification) is
 a powerful tool to study hadron
 production.

Aerogel Cherenkov (PID)

Aerogel Cherenkov (ACC)
- p (p) ID up to 7 GeV/c
- K+ ID up to 4 GeV/c

Time of Flight (TOF)
- p (p) ID up to 4 GeV/c

Drift Chamber
- (momentum meas.)

Tracking detectors
- (PC1, PC2, PC3)

Veto for proton ID
Blast-wave Model Fit

- Blast-wave model is a hydrodynamic-inspired model.
- Extracting kinetic freeze-out properties with BW model.
- Simultaneous fit to p_T spectra ($\pi/K/\rho$) for each centrality class.

\[
\frac{dn}{m_T \, dm_T} \propto \int_0^R dr \, m_T \, K_1 \left(\frac{m_T \, \cosh \rho}{T} \right) I_0 \left(\frac{p_T \, \sinh \rho}{T} \right)
\]

\[\rho = \tanh^{-1} \, \beta_r \quad \beta_r (r) = \beta_s \, f(r)\]

* Ref: PRC48(1993)2462

*Spectra for heavier particles has a convex shape due to radial flow.

(* Resonance decay feed-down correction not applied. Instead, tighter p_T fitting range used. π; 0.6-1.2 GeV/c K; 0.4-1.4 GeV/c, p/pbar; 0.6-1.7 GeV/c)
- N_{part} scaling of T_{fo} between Au+Au and Cu+Cu
- Almost same T_{fo} at $\sqrt{s_{NN}} = 62.4$, 200 GeV

$T_{fo} \sim 120$ MeV
Blast-wave Model Fit - $<\beta_T>$ vs. N_{part}

- N_{part} scaling of $<\beta_T>$ between Au+Au and Cu+Cu
- Almost same $<\beta_T>$ at $\sqrt{s_{NN}} = 62.4$, 200 GeV
\(\langle p_T \rangle \) vs. \(N_{\text{part}} \)

\(\sqrt{s_{NN}} = 200 \text{ GeV} \)

\(\langle p_T \rangle \): \(\pi<K<p \) (mass dependence)

- Consistent with radial flow picture

\(\sqrt{s_{NN}} = 62.4 \text{ GeV} \)

- \(N_{\text{part}} \) scaling of \(\langle p_T \rangle \) between Au+Au and Cu+Cu

- Almost same \(\langle p_T \rangle \) at \(\sqrt{s_{NN}} = 62.4, 200 \text{ GeV} \)
Estimation of \(p/\pi \) at intermediate \(p_T \)

- Extrapolate low-\(p_T \) Blast-wave fit results to intermediate \(p_T \) in order to estimate \(p/\pi \) ratio.

- Hydrodynamic contribution for protons is one of the explanations of baryon enhancement.
- Other contribution is also needed: Recombination, Jet fragmentation

* No weak decay feed-down correction applied.
Baryon enhancement - p/π vs. N_{part}

- N_{part} scaling of p/π between Au+Au and Cu+Cu at same $\sqrt{s_{NN}}$

Au+Au vs. Cu+Cu at 200 GeV

Au+Au vs. Cu+Cu at 62.4 GeV

JPS 2007 Spring, 3/26/2007, TMU, Tokyo

Masahiro Konno (Univ. of Tsukuba)
No N_{part} scaling of p/π (p_{bar}/π) in Au+Au between 62.4 and 200 GeV.
- dE_T/dy scaling of p_{bar}/π seen. => Proton production (at this p_T range) at 62.4 GeV is partly from baryon transport, not only pair production. Nuclear stopping is still large at 62.4 GeV.

Phenix preliminary
Statistical Model Fit - μ_q vs. N_{part}

- N_{part} scaling of μ_q between Au+Au and Cu+Cu
- Larger μ_q at $\sqrt{s_{NN}} = 62.4$ GeV than that at 200 GeV

$\mu_q \sim 8$ MeV
Summary

- Scaling properties of PID p_T spectra tested with Au+Au and Cu+Cu data at $\sqrt{s_{NN}} = 62.4/200$ GeV.

- Bulk properties (dN/dy, $<p_T>$, kinetic and chemical freeze-out properties) are scaled with N_{part} (~volume) at same $\sqrt{s_{NN}}$.

- $p(\bar{p}/\pi$ ratios:
 (1) N_{part} scaling between Au+Au and Cu+Cu at same $\sqrt{s_{NN}}$
 (2) dE_T/dy scaling between 62.4 and 200 GeV in Au+Au
 (3) \bar{p}/π is a good indicator of baryon enhancement

On-going

- MRPC-type TOF counter (σ_{TOF}~100ps) was installed behind the Aerogel for high-p_T PID upgrade. Run-7 has just started for 200 GeV Au+Au. Higher-p_T physics can be reached.
Backup
Statistical Model Fit

- Extracting chemical freeze-out properties with statistical model fit.
- Fitting particle ratios of dN/dy (π/K/p) at y~0.
- Assuming chemical equilibrium of light quarks (u,d,s), \(\gamma_s = 1 \).
- Partial feed-down correction taken into account.

\[
\frac{N_i(T, \mu)}{V} = \frac{g_i}{2\pi^2} \gamma_s \int_0^\infty \frac{p^2 dp}{e^{(E_i - \mu_B B_i - \mu_s S_i)/T} + 1}
\]

- \(T_{ch} \), \(\mu_q \): relatively stable
- \(\mu_s \), \(\gamma_s \): not determined with this set of ratios (\(\pi/K/p \)). Strangeness info is short.

Ref:
- Phys. Rev. C71 054901, 2005
- nucl-th/0405068
- NPA698(2002)306C

\[\sqrt{s_{NN}} = 200 \text{ GeV} \]
\[\sqrt{s_{NN}} = 62.4 \text{ GeV} \]
If γ_s is free, $T_{ch} = 155 \pm 7$ MeV.

- N_{part} scaling of T_{ch} between Au+Au and Cu+Cu
- Almost same T_{ch} at $\sqrt{s_{NN}} = 62.4, 200$ GeV