Reaction plane and pseudo rapidity dependence of inclusive photon - hadron $\Delta \phi = \Delta \eta$ correlation in Au+Au $\sqrt{S_{NN}}$ =200 GeV collisions at RHIC-PHENIX

Third DNP/JPS Joint Meeting, 14th October 2009

Takahito Todoroki, for the PHENIX Collaboration University of Tsukuba High Energy Nuclear Physics Group

Outline

Jet Physics in Heavy Ion collisions
Trigger Selected Δφ correlation
Physics Motivation
Analysis
Consistency check of Δφ – Δη correlation
Summary

Jet physics in heavy ion collisions

- Jet like correlation is useful probe to understand the mechanism of hot matter evolution in heavy ion collisions!!
 - Jet quenching
 - Mach Cone like structure
- As next step, trigger selected correlation study has started.

Trigger selected jet like $\Delta \phi$ correlation

- Au+Au 200 GeV Hadron-Hadron (Run7)
- Centrality: 20–50%
- ♦ Pt^{Trig}:2-4GeV Pt^{Asso}: 1-2GeV
- By selecting trigger relative angle from reaction plane, correlation shape at away side changes.

 $\phi_{\text{s}} = \phi_{\text{Trig.}} - \Phi_{\text{R.P.}} \left[-\pi/2, \pi/2\right]$

Physics Motivation

- It has been observed that $\Delta \phi$ correlation with respect to R.P. has right/ left asymmetry given by almond like geometry and/or elliptic expansion.
- \blacklozenge We might be able to discuss the mechanism of QGP expansion/geometry in η direction by the following analysis.
- To this aim, We confirm if there is existence of reaction plane and trigger η dependence in $\Delta\eta$ correlation at $\Delta\phi=0$.
 - \blacksquare Backward/Forward asymmetry with respect to selected trigger η
 - Reaction Plane dependence

Analysis

AuAu 200GeV taken by RHIC-PHENIX in Run7

• Inclusive Photon – Hadron $\Delta \phi - \Delta \eta$ correlation w.r.t. R.P. and trigger η

- Trigger is Inclusive Photon at pT : 2-4GeV
- Associate is Charged Hadron at pT :1-2GeV
- The reason why I chose inclusive photon is that Inclusive photon Hadron analysis is the first step towards Direct photon – Hadron Analysis.
- v2 modulated background was subtracted with ZYAM method.
- Trigger particle binning
 - R.P. is divided into 8 regions
 - η is also divided into 8 regions out of plane

Pseudo Rapidity

Consistency check of $\Delta \phi - \Delta \eta$ correlation at central

 \blacklozenge We checked consistency of $\Delta \varphi$ – $\Delta \eta$ correlation between Run7 and Run4

- the left plot is the sum of the trigger selected $\Delta \phi$ $\Delta \eta$ correlation
- We can see the a certain level of consistency between those.

Consistency check of $\Delta \phi - \Delta \eta$ correlation at peripheral

 \blacklozenge We checked consistency of $\Delta \varphi$ – $\Delta \eta$ correlation between Run7 and Run4

- = the left plot is the sum of the trigger selected $\Delta \varphi$ $\Delta \eta$ correlation
- We can see the a certain level of consistency between those.

Summary & Outlook

Summary

- We observed right/left asymmetry in $\Delta \phi$ correlation w.r.t. R.P.
- \blacksquare We checked the consistency of $\Delta \varphi$ $\Delta \eta$ correlation between Run7 and Run4
- Outlook
 - Be started the trigger selected $\Delta \phi$ $\Delta \eta$ correlation analysis w.r.t. R.P. and η_{trig}

BACK UP

$\Delta\eta$ correlation shape

| 12

Trigger Particle Binning

PHENIX detector

Azimuthal direction

Component	$\Delta\eta$	$\Delta \phi$	Purpose and Special Feature
Magnet: central (CM)	$ \eta < 0.35$	360°	Up to $1.15 \text{ T} \cdot \text{m}$
muon (MMS)	-1.1 to -2.2	360°	0.72 T·m for $\eta=2$
muon (MMN)	1.1 to 2.4	360°	0.72 T·m for $\eta=2$
BBC	$3.0 < \eta < 3.9$	360°	start timing, fast vertex
ZDC	$\pm 2 \text{ mrad}$	360°	Minimum bias trigger
\mathbf{DC}	$ \eta < 0.35$	$90^\circ \times 2$	Good momentum and mass resolution
			$\Delta m/m=0.4\%$ at $m=1.0~{\rm GeV}$
\mathbf{PC}	$ \eta < 0.35$	$90^{\circ} \times 2$	Pattern recognition,
			tracking for nonbend direction
RICH	$ \eta < 0.35$	$90^{\circ} \times 2$	Electron identification
TOF	$ \eta < 0.35$	45°	Good hadron identification, $\sigma_{TOF} \sim 120 \text{ps}$
PbSc EMCal	$ \eta < 0.35$	$90^{\circ} + 45^{\circ}$	For both calorimeters, photon and
			electron detection
PbGl EMCal	$ \eta < 0.35$	45°	Good e^{\pm}/π^{\pm} separation $p > 2.0 \text{ GeV/c}$
			by EM shower and $p < 0.35$ GeV by TOF
			K^{\pm}/π^{\pm} separation up to 1 GeV/c by TOF
$\mu \operatorname{tracker}(\mu \mathrm{TS})$	-1.1 <mark>5 t</mark> o -2.25	360°	Tracking for muons
$\mu \operatorname{tracker}(\mu \mathrm{TN})$	1.15 to 2.44	360°	Muon tracker north installed for Year-3
μ identifier(μ IDS)	-1.15 to -2.25	360°	Steel absorbers and Iarocci tubes for
μ identifier(μ IDN)	1.15 to 2.44	360°	muon/hadron separation
RxNP	$1.0 < \eta < 2.8$	360°	Good resolution for reaction plane

|4

- I. Projected $\Delta \Phi \cdot \Delta \eta$ correlation to the $\Delta \Phi$ direction
- 2. Applied ZYAM Method to projected $\Delta \Phi$ correlation and extract b0
- 3. Adopted the b0 extracted in 2. for all $\Delta \eta$ range

Corr = Rawcorr - b0 * Flow