# Hard - Soft Interplay at RHIC

relation between  $v_2$  and jet-modification

ShinIchi Esumi Univ. of Tsukuba

to replace the following talk

--- Bridging the soft and the hard at RHIC ----Jiangyong Jia

### Two particle $\Delta \phi$ correlation measurements

away side suppression at relatively high  $p_T$ 

away side modification at relatively low-middle  $\ensuremath{p_{\text{T}}}$ 



### Single particle $R_{AA}$ and $v_2$ measurements



(1) geometrical (almond shaped) effector(2) dynamical (elliptic expansion) effect











AMPT(v1.25/v2.25 string melting) : Au+Au 200GeV b=7fm (with embedding option)

#### Z.W.Lin, J.Jia, S. Mohapatra, S. Esumi



AMPT(v1.25/v2.25 string melting) : Au+Au 200GeV b=7fm (with embedding option)

#### Z.W.Lin, J.Jia, S. Mohapatra, S. Esumi



## Summary and Outlook (in back-ups)

- (1) re-distribution of lost energy from jet quenching at low-middle  $\ensuremath{p_{T}}$
- (2) strong R.P. dependence of the Mach-cone/ridge shape strong preference of associate particle emission towards the in-plane
- (3) trigger particle bias in soft particle  $v_2$  can be understood qualitatively what would be the true  $v_2$  to be compared with hydro-model?
- (4) hard/soft coupling with transverse/longitudinal geometry/dynamics
- (5) controlled direction/depth bias with reconstructed jets





