Recent (and some old) Results from PHENIX (and RHIC, LHC)

ShinIchi Esumi Inst. of Physics Univ. of Tsukuba

Contents

Bulk properties (Soft) :		collective expansion effects
Energy loss (Hard)	•	high p_T / jet suppressions
Soft / Hard interplay		jet / bulk modification

Quark momentum distribution

--- extracted from multi-strange hadron ratio ---

Collective radial expansion -during the partonic phase -before the hadronic phase

Quark coalescence or recombination mechanism for the hadronization

0.04

0.02

baryon v_2 : v_2 is already established during the quark phase before the hadronization. This seems to be true even for heavy guark like charm.

0.5

PH^{*}ENIX

preliminary

1.5

1

2

Hadron

QGP

KE₁^{2,5}/n [GeV]

ATHIC2010, 18/Oct/2010, Wuhan, China

Parity violation signal

--- charge asymmetry w.r.t. R.P. ---

Particle species dependence of suppression (R_{AA})

--- some quark flavor difference? ---

Understanding of high $p_T \pi^0 v_2$ and R_{AA} simultaneously --- assumption of a common origin : energy loss ---

Reaction plane (path length) dependent energy loss --- one of dominant sources of v₂ at high p_T ---

Burak Alver, GR, arXiv:1003.0194 (PRC 2010) Participant Triangularity

ATHIC2010, 18/Oct/2010, Wuhan, China

Direct photon at low p_T

Summary

- * Transverse momentum distribution --- radial flow
- * Elliptic and higher order event anisotropy --- elliptic flow
- * Charge asymmetry --- possible parity violation
- * High p_{T}/jet suppression R_{AA} and v_{2} --- energy loss
- * Jet modification via correlation --- feed back to bulk property
- * Ridge, Mach-cone like structure vs triangular anisotropy
- * Controlled biases with direct photon, jet and single hadron
- * Initial temperature with thermal photon (and lepton pairs...)

- (1) away side of a back-to-back(b-t-b) jet is wider in η than in ϕ
- (2) If there are two parallel b-t-b jets, away side of one b-t-b jet can be near side of the another b-t-b jet.
- (3) Suppression as well as modification of b-t-b jet would depend on relative angle w.r.t. almond geometry, we know this from v_2 measurement and believe this is the major source of v_2 at high p_T .
- (4) Therefore, there should be inter b-t-b jets correlation give by the geometry from (3), this could make near side ridge like effect, especially if the effect (3) has shaper dependence than $v_2(=\cos 2x)$.
- (5) We always measure inclusive v_2 , which includes the effect (3). Therefore any modification which could generates the elliptic anisotropy would be included in the measured v_2 .
- (6) We subtract BG contribution with this v_2 from (5) by maximizing BG contribution assuming zero jet yield at minimum at any d ϕ .
- (7) If near and away side jets overlap each other, this subtraction underestimates the jet yield and can change the extracted jet shape.
- (8) If you extract angular dependence of jet w.r.t. R.P., the results will easily be affected by the choice of v_2 from (5).

ATHIC2010, 18/Oct/2010, Wuhan, China