

LHC-ALICE 実験におけるジェット測定の ジェット抑制効果による影響

17/10/2009

JPS 2010 spring 2010/03/20

Dousatsu Sakata for the ALICE Collaboration

University of Tsukuba & RIKEN

JPS 2010 spring 2010/03/20

Outline

Jet Physics for Nuclear Collisions

- Motivation
- **ALICE**
- Event Generator [QPYTHIA&QPYTHIA]
- □ Jet Finding Algorithm [FASTJET]
- □Analysis Flow
- Result
 - Jet Finding Performance
 - R_{AA} of Di-Jet
- Summary & Outlook

Motivation

JPS 2010 spring 2010/03/20

In order to do accurate jet level measurement for "Jet Quenching", it is necessary to evaluate the quenching effect on Jet-Finding.

4

A Large Ion Collider Experiment

JPS 2010 spring 2010/03/20

ALICE is optimized to study heavy ion collisions. Pb+Pb collisions will be studied at $\sqrt{s} = 5.5$ TeV

Central detectors ITS,TPC,TRD,TOF,EMCAL,PHOS,HMPID **Forward detectors** FMD,Vo,To,ZDC,PMD,Muon

PYTHIA & QPYTHIA : event generator for pp collisions http://home.thep.lu.se/~torbjorn/Pythia.html QPYTHIA: event generator including quenching effect [arXiv:0906.0754] based on BDMPS model [Phys. Rev. C58 (1998) 1706] \$\$ Radiative energy loss : gluon radiation \$\$ Collsional energy loss : energy flow from parton to matter

0

Di-Jet yield of quenched Jet is 15% of the yield of unquenched Jet at R=0.4 R_{AA} is getting larger with increasing R.

JPS 2010 spring 2010/03/20

Summary & Outlook

Tested several Jet Finding algorithms w/wo quenching effect.

- Axis resolution is about 40% broad due to quenching effect.
- $\,\,{}^{_{\rm T}}$ dE $_{\rm T}$ is shifted about 20GeV by quenching effect.
- R_{AA} of Di-Jet is about 0.15 at R=0.4

Evaluate Jet Finding performance with background.
Evaluate possibility of reconstruction of Energy loss.

Thank you very much

12

JPS 2010 spring 2010/03/20

Backup

Event Generation & Selection

JPS 2010 spring 2010/03/20

PYTHIA p+p 5500GeV	QPYTHIA Pb+Pb 5500GeV Centrality : 0-10% qhat : 20 GeV ² /fm	Status of PYTHIA & QPYTHIA (tuned for ALICE)	
		AliRoot	v4-17-01
		# of event	10000
All stable particles are adapted to Jet Finding. Detector smearing is not included. No background particles.		Process	All QCDon
		φ	$0 \sim 2\pi$
		η	-1 ~ 1

Jet Selection for the analysis 2-parton in |eta| < 1 2-Jet in |eta| < 1 $Back-to Back Jet [cos(\phi_{Jet1} - \phi_{Jet2}) < -1/\sqrt{2}]$

To evaluate "Quenching effect" with Jet Finding, it is necessary to minimize the other higher order effects.

