LHC-ALICE実験における クォークジェット・グルーオンジェット識別の研究

横山広樹 for the ALICE Collaboration

2010/03/20 日本物理学会第65回年次大会

Outline

• 導入

- Quark Gluon Plasma(QGP),LHC-ALICE実験
- ジェット
 抑制効果
- 研究動機
- 解析方法
- 結果
 - Quark-JetとGluon-Jetの違い
 - Likelihood法を用いたQuark/Gluon-Jetの識別
- 結論

Quark Gluon Plasma(QGP)

- ◇ 宇宙の進化の過程(~数µ秒)
 - ◆ 高温高密度物質の膨張・冷却
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 ◆
 - ∞ パートン物質からハドロン物質への相転移
- Lattice QCD • $T_c \sim 150-170 \text{ MeV}$ • $\epsilon_c \sim 1 \text{ GeV/fm}^3$
- ◆ 高エネルギー重イオン衝突実験
 ◆ 高温高エネルギー密度状態の再現
 ◆ LHC-ALICE 実験
 - √s_{NN} = 5.5TeV Pb+Pb
 √s = 14 TeV p+p

ジェット抑制効果 ~ QGP中でのパートンのエネルギー損失 ∾Δφ=π方向のジェットの消失(RHIC) ∾LHCでの予測 ~ 世界最大の衝突エネルギー

◆多数の高エネルギージェットの生成
 ~200GeV(Inclusive-Jets)

∾QGPを貫通

QGP中でのパートンのエネルギー損失機構の 理解のためにジェット事象は有効である

ジェット抑制効果 ~ QGP中でのパートンのエネルギー損失 ∾Δφ=π方向のジェットの消失(RHIC) ∾LHCでの予測 ~ 世界最大の衝突エネルギー

◆多数の高エネルギージェットの生成
 ◆

∾QGPを貫通

QGP中でのパートンのエネルギー損失機構の 理解のためにジェット事象は有効である

研究動機

- ◆ QGP中でのパートンのエネルギー損失機構の解明
 - パートンのエネルギー損失の測定
 - \rightarrow Di-Jet, γ -Jet
 - パートン種の推定
- Parton-IDの可能性
 - ジェット内粒子分布を用いたQuark/Gluon-Jet識別
 - Likelihood法

シミュレーションを用いたQuark/Gluon-Jet識別の可能性の評価

Q-PYTHIA (AliRoot framework)

◇ PYTHIA + パートンのエネルギー損失

- ∞ 0-10% central AA collision
- BDMPS based energy loss
- $\sim \langle \Delta E \rangle_{BDMPS} \propto \alpha_{S} C_{R} \langle \hat{q} \rangle L^{2}$
 - → qhat [GeV²/fm]: transport coefficient(モデルパラメータ)

6

- ◇ L[fm]:パートンの通過距離
- Section Section Section Section Section C_F=4/3(Quark)
- ▲ Quark/Gluon-Jetの違い(CDF)
 - Ng/Nq~1.5

Analysis Flow & Analysis Conditions

PYTHIA p+p 14TeV

AliRoot v4-17-01 Pythia6, kPyJets (2→2 jet production)

Q-PYTHIA Pb+Pb 5.5TeV

AliRoot v4-17-01
qPythia, kPyJets
qhat=50GeV²/fm
0-10% central

fastjet anti-kt (Jet Reconstruction)

Fastjet(<u>http://www.lpthe.jussieu.fr/~salam/fastjet/</u>)
pT cut of single particle = 0.5GeV/c
Using detectable particles in ALICE
Jet radius parameter : R=0.4

HIJING Pb+Pb 5.5TeV

Jet Separation using Likelihood method

- ✓ Selection of Quark/Gluon-Jet sample
 - ✓ The largest energy jet in dR_{parton}<0.5
 - ✓ dR_{parton} : distance from initial parton
 - ✓ dR_{parton} = $\sqrt{((\eta_{jet} \eta_{parton})^2 + (\phi_{jet} \phi_{parton})^2)}$

Quark-JetとGluon-Jetの違い

∞破砕関数

- higher hump-back plateau
 - Quenched-Jets
 - Sluon-Jets

ξ@Et100GeV	1	2	3	4	5
p⊤[GeV/c]	36.8	13.5	5.0	1.8	0.7

$$\xi = \log\left(\frac{1}{z}\right) = \log\left(\frac{E_T^{jet}}{p_T}\right)$$

Gluon-JetはQuark-Jetに比べ ジェット内の低(高)運動量粒子が多い(少ない)

O

Quark-JetとGluon-Jetの違い

- ◆ Likelihood法で用いるパラメータ
 - ∞ ジェット内粒子数
 - → 粒子の最大横運動量
 - ∞ ジェットの半径方向の拡がり

Quark/Gluon-Jetsの識別

Quark/Gluon-Jetsの識別

識別後のジェット内のQuark-Jetの割合は ϵ_q によって変化する

まとめと今後

- まとめ:
 - Likelihood法を用いたQuark/Gluon-Jet識別
 - Quark-Jet識別効率によって識別されたジェット内のQuark-Jetの割合を変化させることが可能
 - $\epsilon_{quark}: 1.0 \rightarrow 0.4$ frac_{quark}:~40% effect (p+p 14TeV)
 - $\epsilon_{quark}: 1.0 \rightarrow 0.4$ frac_{quark}:~20% effect (Pb+Pb 5.5TeV)
- 今後:
 - Likelihood法で用いるパラメータの重み付け
 - NN法を用いたQuark/Gluon-Jet識別可能性の評価

Di-Jet, y-Jet

Reach of Jet Energy at ALICE

Inclusive-Jet, Di-Jet, γ-Jet Annual Yield at ALICE

- № 10⁴ events/year for Jet Analysis
 - ✤ Inclusive-Jet : ~200GeV
 - Solution State → Di-Jet : ~100GeV

fastjet anti-kt algorithm

- * FastJet-anti-kt algorithm
 - * (http://www.lpthe.jussieu.fr/~salam/fastjet/)
 - 1. calculate d_{ij} and d_{iB} by all particles combination
 - 2. when minimum "d" among them is part of d_{ij}
 - merge particle "i" and "j"
 - 3. when minimum "d" among them is part of d_{iB}
 - that cluster defined as jet
 - 4. repeat until no particle are left

$$\begin{split} d_{ij} &= \min(1/k_{ti}^2, 1/k_{tj}^2) \, \Delta R_{ij}^2/R^2 \,, \\ d_{iB} &= 1/k_{ti}^2 \,. \end{split}$$

Heavy Ion Background

- Second A lot of particles from minijets & QGP
 - \rightarrow Background for high energy jets
- ✤ BKG is increase as jet-radius parameter : R

Separation of Quark/Gluon-Jets

Gluon-Jet Trigger

pTcut dependence

Quark-Jet Trigger

Pb+Pb √s_{NN}=5.5TeV (qPythia+HIJING)

pT>0.5GeV/c

p_T>1.0GeV/c

pT>2.0GeV/c

pTcut dependence

Gluon-Jet Trigger

Pb+Pb √s_{NN}=5.5TeV (qPythia+HIJING)

pT>0.5GeV/c

p_T>1.0GeV/c

pT>2.0GeV/c

Quark-Jet Trigger ($\epsilon_q=0.4$)

p+p √s=14TeV(Pythia)

Quark-Jet Trigger ($\epsilon_q=0.4$)

p+p √s=14TeV(Pythia)

Gluon-Jet Trigger (ε_g=0.4)

p+p √s=14TeV(Pythia)

Gluon-Jet Trigger (ε_g=0.4)

p+p √s=14TeV(Pythia)

Quark-Jet Trigger ($\epsilon_q=0.4$)

Quark-Jet Trigger (ɛq=0.4)

Quark-Jet Trigger (ϵ_q =0.8)

Quark-Jet Trigger (ϵ_q =0.8)

Gluon-Jet Trigger (ϵ_g =0.4)

Gluon-Jet Trigger (ϵ_g =0.4)

Gluon-Jet Trigger (ϵ_g =0.8)

Gluon-Jet Trigger (ϵ_g =0.8)

