Two particle correlations with higher harmonic reaction plane in Au+Au 200 GeV collisions at RHIC-PHENIX

> T. Todoroki for the PH ENIX Collaboration University of Tsukuba, RIKEN Nishina Center JPS 2011 Autumn Meeting at Hirosaki University

Higher harmonic plane & flow

- Fluctuations of initial collision geometry result in higher harmonic deformation
- Transferred to momentum space by collective expansion (hydrodynamics)
 - higher harmonic anisotropy emerge

 Azimuth.
 $\frac{dN}{d\phi} \propto 1 + 2v_2 \cos 2(\phi - \Phi_2) + 2v_3 \cos 3(\phi - \Phi_3) + 2v_4[\Phi_4] \cos 4(\phi - \Phi_4)$

 Correlation among
 $\Phi_2 - \Phi_3 - \Phi_4$ $\langle \cos 6(\Phi_3 - \Phi_2) \rangle = 0$ $\langle \cos 4(\Phi_4 - \Phi_2) \rangle = v_4(\Phi_2)/v_4(\Phi_4)$

v₃: possible source of "Ridge" and "Shoulder"

Ridge : near side long range $\Delta \eta$ correlations

-1.5 ⁻¹

Shoulder: double hump at away side (also long in $\Delta \eta$)

Shoulder

- Flow correlation from v₃ term ~ $b_0 2 v_3^{trig} v_3^{asso} \cos 3\Delta \phi$
 - $-v_3$ subtraction would reduce Ridge and Shoulder \Rightarrow possible source

2 particle correlations at $|\Delta \eta| < 0.7$ with measured v_n subtractions

• Shoulder structures almost disappeared at 0-20% $-v_3$ and $v_4\{\Phi_4\}$ explains shoulder at small $|\Delta\eta|$

• Higher v_n explain ridge and shoulder at large $|\Delta \eta|$

JPS 2011 Autumn

Motivation

Ridge and shoulder explained by higher harmonic v_n at central collisions

Central collisions	Ridge	Shoulder
small Δη (Au+Au 200GeV)		Explained
large $ \Delta\eta $ (Pb+Pb 2.76TeV)	Explained	Explained

- Whether Ridge and Shoulder explained by higher harmonic v_n at peripheral collisions?
 - this analysis focus small $|\Delta\eta|$ range
 - » confirm shoulder explained by v_n or not at peripheral

Analysis

- 2007, Au+Au 200GeV, Minimum Bias Events, 3.2 billion Events
- 2 particle charged hadron $\Delta \phi$ correlations at $|\Delta \eta| < 0.7$, Centrality : 0- 50%
 - Trigger $p_T = 2^2 4$ GeV, Associate $p_T = 1^2 2$ GeV
- $v_n \{\Phi_n\}$ measurements by central track with forward Event Plane ($|\eta|$:1.0–2.8)

v2, v3 and v4{ Φ_4 } subtracted correlations

- Shoulder almost disappeared at centrality 0-10% as before
- "New" shoulder emerge in peripheral collisions
 - with relatively-large systematic error...

Fitting to flow subtracted correlations

- $\cos 3(\Delta \phi)$ term survives both in central and peripheral
- $\cos 4(\Delta \phi)$ term has plus value in central but does almost 0 in peripheral
 - dip at $\Delta \phi = \pi$ is emphasized

Fitting to flow subtracted correlations

- $\cos 3(\Delta \phi)$ term survives both in central and peripheral
- $\cos 4(\Delta \phi)$ term has plus value in central but does almost 0 in peripheral
 - dip at $\Delta \phi = \pi$ is emphasized

Summary & Outlook

- Measured v2, v3 and v4{ Φ_4 } ZYAM subtracted correlations within $|\Delta\eta|$ <0.7 up to centrality 50%
 - Shoulder almost disappeared in central collisions as before
 - "New" shoulder emerge in peripheral collisions
 - » cos3($\Delta \varphi$) term survives in both in central and peripheral
 - » cos4($\Delta \phi$) term survives in central but disappeared in peripheral
 - dip at $\Delta \phi = \pi$ is emphasized at peripheral
 - » with relatively-large systematic error...
- Outlook
 - reduce systematic error width
 - more peripheral centrality range

Backup Slides

Φ_{n} resolution and Φ_{i} - Φ_{i} correlations

 $\Phi_{\mathrm{n\{true\}}}$ can be different for different order

arXiv:1105.3928v1 [nucl-ex]

FIG. 1: (color online) Raw correlation strengths (see text) of the event planes for various detector combinations as a function of collision centrality. The detectors in which the event plane is measured are: (a) RXN North, (b) BBC South, (c) MPC North, and (d) MPC South.

Higher harmonic flow

arXiv:1105.3928v1 [nucl-ex]

 v_2 , v_3 and v_4 { Φ_4 } with model comparison

QM2011 Flow Plenary S. Esumi

FIG. 3: (color online) Comparison of $v_n\{\Psi_n\}$ vs. N_{part} measurements and theoretical predictions (see text): "MC-KLN $+ 4\pi \frac{\eta}{s} = 2$ " and "Glauber $+ 4\pi \frac{\eta}{s} = 1$ (1)" [16]; "Glauber $+ 4\pi \frac{\eta}{s} = 1$ (2)" [17]; "UrQMD" [26];. The dashed lines (black) around the data points indicate the size of the systematic uncertainty.

[16] B. Alver et al., Phys. Rev. C 82, 034913 (2010).

[17] B. Schenke, S. Jeon, and C. Gale, Phys. Rev. Lett. 106, 042301 (2011).

[26] H. Petersen et al., Phys. Rev. C 82, 041901 (2010).

Compare with the Event Plane method

Consistent between the 2PC and full FCal EP method (Similar for $FCal_{P(N)}$).

JPS 2011 Autumn

20

Fourier analysis of the per trigger yield jet function

