LHC-ALICE実験におけるソフトな指針で見るQGP QGP through soft probes at LHC-ALICE

江角晋一、 筑波大学、物理 ShinIchi Esumi, Univ. of Tsukuba

A Large Ion Collider Experiment

Contents ALICE experiment at LHC Multiplicity and p_{T} distribution HBT, v_2 and higher harmonics v_n Multi-particle correlations Summary

1

Univ. of Tsukuba, ShinIchi Esumi 2

Multiplicity in A+A at the highest possible energy

factor of ~2 increase with similar N_{part} dependence

dN_{ch}/dh distribution and E_T/N_{ch}

Particle identified p_T distribution

Particle mass and N_{part} dependence of $< p_T >$

increased radial flow than at RHIC and as a function of centrality

Elliptic flow (elliptic event anisotropy) : v₂

$v_2 vs p_T comparison between RHIC and LHC$

similar hydro-dynamic properties

Beam energy dependence of $\langle v_2 \rangle$ and $v_2(p_T)$

v_2 and R_{AA} at higher p_T region

 v_2 from suppression dominance given by path length

Particle identified v_2 and R_{AA} at higher p_T

particle dependence seems to be vanished at higher p_T

Particle identified v_2 at lower p_T

larger mass-splitting + familiar Baryon/Meson difference larger radial flow in central collisions than in this hydro model

Small deviations in $(m_T-m_0)/n_q$ scaled v_2

v_3 and Initial Fluctuation

black-disk --> sign-flipping v_3 initial fluctuation --> no-sign-flipping v_3 similar effects for all the higher moments v_n

arXiv:1003.0194

Centrality and p_T dependence of v_n

almost zero signal for sign-flipping V_3 (some small signal at RHIC-PHENIX) significant non-sign-flipping v_3 , v_4 at central and higher p_T smaller centrality dependence for v_3 , v_4 than for v_2

Particle identified v₃

hydro : similar mass-splitting at lower p_T n_q scaling : similar Baryon / Meson difference at higher p_T The KE_T/n_q scaling for v₃ is also not as good as for v₂

rapidity separated C₂ is well described by $v_{2,3,4,5}$ as naturally expected because of v_n {2, $|\Delta\eta|$ >1}

Univ. of Tsukuba, Shinlchi Esumi 23

 $v_n \{C_2 \text{ global fit}\} \sim v_n \{2, |\Delta \eta| > 1\}$

A. Adare, QM11

good agreement of v_n even towards higher p_T coming from (low x high) p_T combinations in C_2

init. fluc. : Glauber / CGC

hydro. η/s : Large / Small

Summary

2.76TeV Pb+Pb collisions are measured in LHC-ALICE

- factor of 2 in charged particle multiplicity $dN_{ch}/d\eta$
- factor of 2 in freeze-out volume from HBT
- net-Baryron free region in the phase diagram
- increased and pronounced radial flow in several cases
- similar hydro properties compared with RHIC
- initial fluctuation and hydro-expansion drive the v_n
- discrimination power on initial geometry and viscosity

Back-up

FIG. 7: (Color online) Root mean square eccentricities $\varepsilon_n^{\rm rms}$ for n = 2, 3, 4, 5 for Au-Au collisions at 200 GeV per nucleon, versus the number of participant nucleons $N_{\rm Part}$. $N_{\rm Part}$ is used as a measure of the centrality in nucleus-nucleus collisions: it is largest for central collisions, with zero impact parameter [53]. Thick lines: Monte-Carlo Glauber model [50]; Thin lines: Monte-Carlo KLN model [52].

FIG. 5: (Color online) Harmonic eccentricity coefficients $\varepsilon_2 = \varepsilon_{\text{part}}(a)$, $\varepsilon_3(b)$, $\varepsilon_4(c)$ and $\varepsilon_4(d)$ as functions of impact parameter, calculated from the MC-Glauber (filled symbols, solid lines) and MC-KLN models (open symbols, dashed lines), using the energy density (circles) or entropy density (triangles) as weight function. The contour plots illustrate deformed Gaussian profiles $e(r, \phi) = e_0 \exp\left[-\frac{r^2}{2\rho^2}(1+\varepsilon_n\cos(n\phi))\right]$, with eccentricity $\varepsilon_n(e)$ taken from the MC-KLN model at the corresponding impact parameter.

arXiv:1108.1714

FIGURE 2. Differential $v_2(p_T)$ (left) and $v_3(p_T)$ (right) from viscous hydrodynamics using MC-Glauber-like and MC-KLN-like initial conditions and different values for η/s (see text for discussion).

Fig. 2 shows differential $v_{2,3}(p_T)$ curves resulting from the viscous hydrodynamic evolution of these initial conditions. The solid and dashed curves in the left panel show that, in order to obtain the same $v_2(p_T)$ for MC-KLN-like and MC-Glauber like initial conditions, the fluid must be twice as viscous for the former than for the latter. The right panel shows that, with η/s chosen to produce the same v_2 , MC-Glauber-like and MC-KLN-like initial conditions produce dramatically different v_3 , with the one from MC-KLN-like initialization being much smaller. Conversely, if η/s is tuned to produce the same v_3 , MC-Glauber-like and MC-KLN-like initial conditions require the same value of η/s (solid and dash-dotted lines in the right panel), which then leads to dramatically different v_2 values for the different initial conditions (see corresponding lines in the left panel). These conclusions agree qualitatively with corresponding statements made in Refs. [5, 6].

$|\Delta\eta|$ dependence of v_n from LHC-ATLAS

arXiv:1107.1468

 $|\Delta \eta|$ dependence of $(v_n^{\text{trig.}} v_n^{\text{asso.}})$ with $v_n \{C_2 \text{ global fit}\}$, which they call v_n factorization in ATLAS

Probe the transverse geometry and/or dynamics with trigger angle selected 2-particle correlation

Observed left/right asymmetry remains after "the usual/normal" v_3 subtraction.

Two competing processes seen

JPS symposium, QGP at RHIC-LHC, 17/Sep/2011, Hirosaki

200GeV Au+Au -> h-h

Possible charge asymmetry signal from Local Parity Violation

p_T dependence of the observed asymmetry signal

