

テーマ:「宇宙の歴史と現代物理学」

第1回 ビックバンと原子核・素粒子物理学

 $\langle \bullet \rangle$

第2回 重イオン衝突実験で宇宙誕生の謎にせまる

第2回 重イオン衝突実験で宇宙誕生 $\langle \bullet \rangle$ $\langle \bullet \rangle$ に迫る 5. 高エネルギー重イオン実験 6. 「クォークスープ」と初期宇宙 7. (その後の宇宙) 8. 最後に 3

前回の復習

5

* ビックバンの宇宙の初期状態に戻る

* どれくらいまで戻るか

* ビックバンから1/1,000,000秒(10⁻⁶秒後=1マイ クロ秒)後

* そのときの宇宙の温度は約1兆度

- * 質量獲得の謎(99%の質量は、クォークから陽 子、中性子になるときに生まれている)
 - * そこではクォークやグルーオンが閉じ込めを破り、
 自由な状態、「クォーク・グルーオンプラズマ」
 (QCP) が存在している

①超高温度の実現

◇*高エネルギーの加速器を利用する。

* 加速器のエネルギー: eV (電子ボルト)

* LHC加速器で陽子を加速させる場合:

* 14 TeV (テラ電子ボルト) = 14×10¹² eV (重心衝突系)

* LHC加速器で鉛の原子核を加速させる場合:

* 鉛原子核の質量数(A)=208 (陽子数82、中性子数126)

* 5.5 × A TeV = 5.5 × 208 TeV = 1144 TeV = 1.144 PeV (重心衝突系)

* 加速器の運動エネルギーを「熱エネルギー」に変換→粒子生成に使われる

どれくらい高温にすればよいか?

* 強い相互作用を記述する理 論、QCD(量子色力学、 Quantum Chromodynamics)の 予言

- * 170 MeV~2兆Kで、通常の
 ハドロン(陽子やパイ中間
 子)からQGP「相」に相転移
 する
- * LHC 加速器や、RHIC加速器
 では、ちょうど 170 MeV 付近の温度を生成できる(後で説明)

2大きな体積の実現 * 陽子では小さすぎる *陽子の半径1fm(フェムト=10⁻¹⁵m) *原子核の半径: $R = 1.2A^{1/3}$ (Aは質量数) *鉛の場合:R=1.2x(208)^{1/3}=7.1 fm * ポイント: 陽子よりも半径が7倍(質量数は200倍) 大きい原子核を高エネルギーで衝突させ、高温、大体積 の物質を人工的に生成する。

t = -19.800

The Nobel Prize in Physics 2004

"for the discovery of asymptotic freedom in the theory of the strong interaction"

David J. Gross	H. David Politzer	Frank Wilczek
3 1/3 of the prize	3 1/3 of the prize	3 1/3 of the prize
USA	USA	USA
University of California, Kavli Institute for Theoretical Physics Santa Barbara, CA, USA	California Institute of Technology (Caltech) Pasadena, CA, USA	Massachusetts Institute of Technology (MIT) Cambridge, MA, USA
b. 1941	b. 1949	b. 1951

ATLAS 国際共同実験 (CERN)

CMS 国際共同実験 (CERN)

CMS Experiment at LHC, CERN Data recorded: Mon Nov 8 11:30:53 2010 CEST Run/Event: 150431 / 630470 Lumi section: 173

ALICE 国際共同実験 (CERN)

6.クォークスープと初期宇宙 29

*光を使う。

*光は物質と「強い相互作用」をしないので、周りの物 質の影響を受けずに、衝突初期の情報を持ったまま、 出てくる。

31

*光子のエネルギー分布から温度が分かる。

太陽の場合

* <u>太陽の温度</u>

黒点:4,000 K 表面温度: 5,780 K 中心温度:1.5 × 10⁷ K $\langle \bullet \rangle$

<u>*温度 K (ケルビン) と eV の対応</u>

電子1個を1Vの電位差で加速したときのエネルギーが1 eV. 1 eV の平均運動エネルギーをもつ気体の温度は 11,604 K = 10⁴ K (気体の分子運動論より)

実際の電磁カロリメーター検出器 (ALICE実験)

EMCal Module = 4 towers

鉛-シンチレータ サンプリング電磁カロリメータ

(lηl<0.7, Δφ=107°)
Shashlik geometry, APD 光センサ
~13,000 towers
セグメンテーション(ΔηxΔφ~0.014x0.014)
エネルギー分解能: σ(E) < 0.1/√E %

光子を測るもう一つの方法 ◇ * 「仮想」光子を測る。 *光子は質量ゼロの粒子。ただし、量子力学による不確 定性が許される範囲の極々短時間では、質量を持つ 「仮想光子」として存在できる。 *仮想光子は、電子と陽電子対に崩壊する。 * 電子、陽電子対を測定すれば、「仮想光子」=光子が 測定できる 38

(陽) 電子の測り方

*チェレンコフ光を利用する。

*チェレンコフ光とは?

* 荷電粒子が屈折率 n の物質中を通過した際、物質中での光の 速度 (c/n) より荷電粒子の速度 (v) が速い場合に、粒子の飛跡 に沿って放射される弱い光のこと。

1934年、P.A. Cherenkov により発見。I.M. Frank, I.Y. Tamm により その現象を古典電磁気学で説明(ノーベル物理学賞受賞 1958「チェレンコフ効果の発見とその解釈」)。

アメリカ/アイダホ国立研究所内 にある新型実験炉で観測された チェレンコフ放射

The Nobel Prize in Physics 1958

"for the discovery and the interpretation of the Cherenkov effect"

Pavel A

 \diamond

Pavel Alekseyevich Cherenkov	ll'ja Mikhailovich Frank	Igor Yevgenyevic Tamm
O 1/3 of the prize	@ 1/3 of the prize	3 1/3 of the prize
USSR	USSR	USSR
P.N. Lebedev Physical Institute Moscow, USSR	University of Moscow; P.N. Lebedev Physical Institute Moscow, USSR	University of Moscow P.N. Lebedev Physica Institute Moscow, USSR

Jet Suppression at RHIC

Quarks

Animation by Jeffery Mitchell

Hot and Dense Nuclear Matter

ジェットの結果(1)

ジェットの結果(2)

ジェット測定より分かったこと $\langle \bullet \rangle$ *ジェットは物質中で大きく吸収されている。 *この性質はQGP特有のもの。 * QGPの生成は疑いようがない。 * 吸収されたエネルギーは、粒子生成につかわれている ことが分かってきた(現在のホットな話題の1つ)。 50

残り1%の質量獲得機構とは?

58

- (カイラル)自発的対称性 * の破れ(南部陽一郎,2008年 ノーベル物理学賞)
- * QCD (量子色力学)の真 空:クォークの対称性が保 たれている。高温、高密度 に世界
- * 一方、現在はその対称性が 破られている状態。

 $E_{-} = \pm (e_{-}^{0} \pm \delta_{-}^{0})^{\frac{1}{2}}$

(1.2)

実験的にどう迫るのか?

 $\langle \bullet \rangle$

* QGP状態を作って、QCDの閉じ込めを破ってあげればよい。

 $\langle \bullet \rangle$

*そこで、理論的に予測されている「ベクトル中間子」 と呼ばれる粒子を測定し、その質量が軽くなっている かどうかを調べる。

*ベクトル中間子のうち、電子-陽電子対に崩壊するものを測定。

最後に

 ◆ この10年で高エネルギー重イオン、クォークグルー オンプラズマ(QGP)の物理は格段に進歩した。

◆ RHIC, LHC 加速器が稼働。ハイクオリティ実験データ。

● 一つの大きな発見は、QGPの液体的性質。

クォークスープと初期宇宙

今後10年、「クォークスープ」の性質解明、質量獲得の謎、相構造の解明、が期待される