High p_T suppression and v_2 from PHENIX
ShinIchi Esumi, Univ. of Tsukuba

Contents
- High p_T suppression
- v_2 and higher harmonics
- HBT w.r.t. ϕ_n
- Jet correlation w.r.t. ϕ_n
(Non-) suppression of hadron (direct-photon)

- strong suppression of hadrons
- no suppression of direct photons at high p_T
Thermal photons and their Flow

- significant low p_T photon excess
- comparable v_2 with hadrons

$d+Au$

$Au+Au$

- External conversions (PHENIX preliminary)

arXiv: 1208.1234

arXiv: 1105.4126

PHENIX QM12
Energy dependence of hadron suppression from low RHIC energy to LHC energy

- smaller suppression (or enhancement) at low energy
- saturation at high energy

![Graph showing energy dependence of hadron suppression](image)

arXiv: 1204.1526

High pT physics at LHC, Wuhan, China, 23/Oct/2012
ShinIchi Esumi, Univ. of Tsukuba
Fractional energy loss

- continuous increase of energy loss in terms of fractional energy loss in p_T (coming from slope changes)

Au+Au, Most central 0-10%

- 200 GeV
- 62.4 GeV
- 39 GeV

Pb+Pb 0-5%, δ (global)=0.3%
Au+Au 0-5%, δ (global)=1.0%
Pb+Pb 70-80%, δ (global)=0.7%
Au+Au 70-80%, δ (global)=2.9%

ALICE
2.76 TeV

PHENIX
200 GeV

High pT physics at LHC, Wuhan, China, 23/Oct/2012
ShinIchi Esumi, Univ. of Tsukuba
R_{AA} and v_2 from RHIC to LHC

- no simple solution to describe R_{AA} and v_2 for both RHIC/LHC simultaneously
Deviation from n_{CQ} scaling at 200GeV $Au+Au$

- consequence of similar v_2 at high p_T for different particle species
Central collisions (193GeV U+U) at RHIC

- larger radial flow
- various geometry tests on going with Cu+Au, U+U data from run12.
Beam energy dependence for identified particle v_2 and v_3 - similar for all particle species
Blast Wave fitting and n_{CQ} scaling of identified particle v_n

PHENIX, QM12

(a) : $\sim v_2 / n_{CQ}$
(b) : $\sim v_n^{1/n}$
(a)+(b) : $\sim v_n / n_{CQ}^{n/2}$

- anisotropy in velocity, coordinate
- T_f and ρ_0 constrained by spectra

T_f : temperature at freeze-out
ρ_0 : average velocity
ρ_n : anisotropic velocity
s_n : spatial anisotropy
Azimuthal HBT of $\pi\pi$, KK

High pT physics at LHC, Wuhan, China, 23/Oct/2012

ShinIchi Esumi, Univ. of Tsukuba
$R_{T\text{-side}}, R_{T\text{-out}} (\phi - \Phi_2)$

$R_{T\text{-side}}, R_{T\text{-out}} (\phi - \Phi_3)$

PHENIX, QM12

Au+Au 200GeV 0-10%

$R^2_{T\text{-side}} < R^2_{T\text{-out}}$ oscill. for $n=2,3$ (central)

Initial spatial fluctuation (triangularity)

Momentum anisotropy triangular flow v_3
Initial vs Final spatial anisotropy

- **S_2, S_3, S_4**
 - Extracted by BW fitting with spectra + $v_{2,3,4}$ of π, K, p
 - T_f: temperature at freeze-out
 - ρ_0: average velocity
 - ρ_n: anisotropic velocity
 - s_n: spatial anisotropy

Au+Au 200GeV

- Extracted from R_{side} by $\pi\pi$ HBT

High pT physics at LHC, Wuhan, China, 23/Oct/2012

ShinIchi Esumi, Univ. of Tsukuba
2-part. $\Delta \phi$ correlation with various flow subtraction (1)

$\Delta \phi = \phi_{asso} - \phi_{trig}$ [rad]

- v_3 is largely responsible for away side “mach-cone” like shape
2-part. $\Delta \phi$ correlation with various flow subtraction (2)

$1/N_{tr} dN_{pair} / d\Delta \phi$

$0-10\%$

$40-50\%$

$v_2 v_3$

$v_2 v_3 v_4 (\Psi_2)$

$v_2 v_3 v_4 (\Psi_4)$

- but $v_4 \{\Phi_4\}$ matters!

PHENIX, QM12
Correlations relative to Ψ_2 & Ψ_3, 40-50%

Au+Au 200GeV, 40-50%, 2-4×1-2 GeV, $v_2 v_3 v_4(\Psi_4)$ subtracted with $<\cos(\Psi_2-\Psi_4)>=v_4(\Psi_2)/v_4(\Psi_4)$ by ZYAM

PHENIX, QM12

mid-central
- strong Φ_2 dependence and left/right asymmetry coupling with geometry and/or expansion
- almost no Φ_3 dependence (poor Φ_3 resolution)
Correlations relative to Ψ_2 & Ψ_3, 0-10%

Au+Au 200GeV, 0-10%, 2-4 \& 1-2 GeV, $v_2 v_3 v_4(\Psi_4)$ subtracted with $<\cos 4(\Psi_2 - \Psi_4)> = v_4(\Psi_2)/v_4(\Psi_4)$ by ZYAM

- Out-of-plane correlation enhanced (strong jet quenching and collective expansion)
- Some weak Φ_3 dependence

PHENIX, QM12

High pT physics at LHC, Wuhan, China, 23/Oct/2012
Shinichi Esumi, Univ. of Tsukuba
Summary

• High p_T suppression
• v_2 and higher harmonics
• HBT w.r.t. Φ_n
• Jet correlation w.r.t. Φ_n
Centrality and p_T dependences of v_n at 200GeV Au+Au

$\sqrt{s_{NN}} = 200$GeV

v_3 is comparable to v_2 at 0~10% weak centrality dependence on v_3

$v_4(\Phi_4) \sim 2 \times v_4(\Phi_2)$

All of these are consistent with initial fluctuation.
How the initial geometrical anisotropy was transformed into the final momentum anisotropy?
Small deviations in \(\frac{m_T-m_0}{n_q}\) scaled \(v_2\)

Pb+Pb 2.76TeV

roughly \(\frac{m_T-m_0}{n_q}\) scaled for all energies
larger \(p_T\) shift for heavier particles
radial flow increases with energy

M. Krzewicki, QM11
Au+Au 200GeV, $p_T^t \otimes p_T^a = 2-4 \otimes 1-2$ GeV

$V_2 V_4(\Psi_2)$

$V_2 V_3$

$V_2 V_3 V_4(\Psi_2)$

$V_2 V_3 V_4(\Psi_4)$

$V_1^{EP \, flp} V_2 V_3 V_4(\Psi_4)$

$V_1^{2PC} V_2 V_3 V_4(\Psi_4)$
Correlations relative to Ψ_2 & Ψ_3 20-30%