The Measurement Of Direct Photon Azimuthal Anisotropy At RHIC-PHENIX Experiment

Sanshiro Mizuno for PHENIX collaboration University of Tsukuba, RIKEN September, 21th, 2013 21pSA-6

Direct Photon is powerful probe

Direct photon is all photon except for the decay photon from hadron.

- It doesn't strongly interact with QGP.
- It is created by several sources.

The challenge is identification the photon source.

photon sources

initial hard scattering bremsstrahlung by scattered parton Energy loss by high mom parton

hadron decay

Azimuthal anisotropy

$$E\frac{d^3N}{dp^3} \propto \left[1 + 2\sum_{n=1}^{\infty} \nu_n \cos\{n(\phi - \Phi_n)\}\right]$$
$$\nu_n = <\cos\{n(\phi - \Phi_n)\} >$$

Event Plane(Φ_n) The base direction for expansion $\underline{v_n}$ is strength of anisotropy

Azimuthal anisotropy is strongly related to initial geometry and expansion of QGP.

- $\gamma^{\text{dir.}}$ v₂ is close to 0 in high p_T, which is consistent with expectation.
- It has as strong v_2 as hadron in low p_T .

 $\gamma^{dir.} v_3$ is needed to understand photon production mechanism.

13/09/21

Method to measuring $\pi^0 v_3$

 π^0 invariant mass is measured by combined $\gamma+\gamma$ with same event and mixed event.

13/09/21

The result of $\pi^0 v_3$

 $\pi^0 v_3$ is measured up to 4.0GeV/c. They are confirmed to be consistent with $\pi^{\pm} v_3$.

Decay photon v_3 will be simulated from these results.

13/09/21

Summary

Direct photon study is powerful probe.

- $\gamma^{\text{dir.}}$ has as strong v_2 as hadron v_2 in low p_T .
- v₃ study is important in order to understand photon production mechanisms.

 $\pi^0 v_3$ result are shown.

• It is checked to be consistent with $\pi^{\pm} v_3$.

- Decay photon v_3 will be simulated.
- $\gamma^{\text{dir.}} \mathbf{v}_3$ will be measured.

13/09/21

BACK UP

13/09/21

PHENIX detector

CNT coverage $|\eta| < 0.35$ $\phi : 180$

- Tracking detector DC, PC1, PC2, PC3
- particle identification
 RICH, TOF, AGEL, EMCal

EMCal is used to detect photon. PC3 is used to remove charged particle.

Event Plane is measured by RxN detector.

13/09/21

Direct Photon is not suppressed.

 R_{AA} of direct photon is consistent with unity in high p_T . This is consistent with the expectation that γ^{dir} coming from initial scattering is dominant.

13/09/21

Existence of additional photon sources

PRC 87, 054907(2013)

Enhancement of R_{AA} may indicate existence of a medium effect as an additional photon source in low p_T .

13/09/21

v_n of charged π ,K,p result

Azimuthal anisotropy has particle species dependence, which are mass dependence and meson/baryon dependence.

Higher harmonics are created from initial geometry deformation, they are affected by the effect of QGP expansion.

13/09/21

STUDY TEMPERATURE

 T_{LHC} is ~30% higher than T_{RHIC} .

13/09/21

Estimation of meson v₂

Meson's v₂ are estimated from π^0 v₂ by using KE_T and N_q scaling.

13/09/21

Check to be consistent with $\pi^{\pm} v_3$

 $\pi^0 v_3$ is measured up to 4.0 GeV/c with several centralities. It is confirmed to be consistent with $\pi^{\pm} v_3$.

Decay photon v_n is simulated from π^0 and the other meson v_3 .

13/09/21

PHENIX CNT DETECTORS IN SIDE VIEW

- BBC(3.1<|η|<3.8)
- MPC(3.1<|η|<3.8)
- RxN(1.0<|η|<2.8)

Event are classified by these detectors. Event Plane are measured by these detectors.

13/09/21

Event Plane calculation

Event Plane is calculated by three steps.

- 1. gain correction
- 2. re-centering

3. flattening

$$\nu_{n,real} = \nu_{n,obs} / \text{Res}\{\Psi_n\}$$

Reaction Plane detector(RxN) Inner : $1.5 < |\eta| < 2.8$ Outer : $1.0 < |\eta| < 1.5$

