

Multiplicity dependence of Two-particle correlations in p+p collisions at the LHC with ALICE

JIHYUN Bhom University of Tsukuba 29pHA-6

Outline

- Introduction
 -ALICE
- Two-particle correlations

 -Correlation Function Definition(C₂)
 -Observation with multiplicity dependence of C₂
 -Method
 -Results with multiplicity dependence of rescaled-C₂
 -Slice Δφ projection of rescaled-C₂
- Conclusion

Motivation

ALICE is designed to study heavy-ion collisions and also proton-proton collisions.

- p-p collisions are very important as reference for R_{AA} and I_{AA} .
- There could be small but hot & dense matter created in high-multiplicity p-p events

A Large Ion Collider Experiment

Event Selection

LHC10c_pass3_ P+P collisions 7.0TeV ESD Measured number of track distribution TPC htemp 5283589 Entries Event cut: |Vz|<10cm 10⁶ Mean 8.212 7.078 RMS Event: 5M(5,283,589) 10⁵ MB_trigger Main track cut: track quality 10⁴ cuts(χ²(4),DCA(2cm),#ofcluster/track(70) 10³ $|\eta| < 1.0$ and $p_{T} > 0.15 GeV/c$ 10² pT distribution histPt 10 4.339002e+07 Entries 10⁷ Mean 0.6009 0.5067 RMS 1 10⁶ 120 Ň¹⁴⁰ Track 100 0 20 40 60 80 $p_T : 1 < p_T \le 4 \text{ GeV/c}$ 10⁵ N of Event Minimum Bias 5283589 10⁴ $0 \le 15 \rightarrow \le 15 = 10$ Low Mt(6) 4423097 14.2-100% $15 < \# of track \le 30 \rightarrow < \# of track > = 21$ 10³ Mid Mt(21) 675847 1.4-14.2% 30<#of track → <# of track>=36 High Mt(36) 72884 0-1.4% 10² 0 2 3 5 6 8 9 10

dN/dPt (c/GeV)

Pt (GeV/c)

Observation with multiplicity dependence of C₂

ALICE p-p√s_{NN}=7TeV C₂ 1<p_{T,Trig}≤4GeV/c 1<p_{T,Associ}≤4GeV/c

Mult.-dependence of Two-dimensional (2-D) C₂ charged hadrons as a function of $\Delta \eta$ and $\Delta \phi$ for $1 < p_{T,Trig} \le 4 GeV/c$, $1 < p_{T,Associ} \le 4 GeV/c$, pp collisions at $\sqrt{s} = 7 TeV$ (<# of Track>=6, 21, 36).

- C₂ shows various physics information including HBT, mini-jet, di-jet, phi-ridge and ridge...
- The shapes are different for different multiplicity classes.

Method

-To normalize C₂ for study jet shape

Results with multiplicity dependence of rescaled-C₂

Mult.-dependence of 2-D Scaled C₂ charged hadrons as a function of $\Delta \eta$ and $\Delta \phi$ for $1 < p_{T,Trig} \le 4 GeV/c$, $1 < p_{T,Associ} \le 4 GeV/c$, pp collisions at $\sqrt{s} = 7 TeV$ (<# of Track>=6, 21, 36).

Results with multiplicity dependence of rescaled-C₂

Mult.-dependence of 2-D rescaled-C₂ charged hadrons as a function of $\Delta\eta$ and $\Delta\phi$ for $1 < p_{T,Trig} \leq 4 GeV/c$, $1 < p_{T,Associ} \leq 4 GeV/c$, pp collisions at $\sqrt{s} = 7$ TeV with jet peak cut off for better demonstration of the ridge(<# of Track>=6, 21, 36).

- Comparison between 3 multiplicity classes are done.
- High multiplicity p-p events are more "jet-like".
- Possible indication of "ridge" is seen at high-multiplicity.

JPS 2013 in HIROSHIMA

Slice $\Delta \phi$ projection of rescaled-C₂

ALICE p-pVs_{NN}=7TeV Scaled C₂ $1 < p_{T,Trig} \le 4$ GeV/c $1 < p_{T,Associ} \le 4$ GeV/c

Scaled_Ratio_DPhi_|DEta|<=0.2

Long range slice $\Delta \phi$ projection of resclaed C₂

Conclusion

1. ALICE is designed to study heavy-ion collisions and also proton-proton collisions.

-p-p collisions are very important as a reference for I_{AA}, R_{AA}. -High multiplicity p-p collisions could provide small but high density system.

2. Mult.-Dep. of C_2

-C₂ shows jet-like shape -The shapes are different for different multiplicity.

3. Mult.-Dep. of rescaled-C₂

-Comparison with 3 multiplicity classes is done.

-p-p events are more jet-like for high-multiplicity events.

-Indication of ridge-like signal is seen for high-multiplicity events.

• Back up

Mult.-Dep. of C_2 by p_T _the Lowest_Mt(6)

Mult.-Dep. of C_2 by p_T _the highest_Mt(36)

Observation of Long-Range, Near-Side Angular Correlations in Proton-Proton Collisions at the LHC

Table 1: Number of events for each multiplicity bin used in the 7 TeV analysis with total integrated luminosity of 980 nb⁻¹. The multiplicity of offline reconstructed tracks, $N_{trk}^{offline}$, was counted within the kinematic cuts of $|\eta| < 2.4$ and $p_T > 0.4$ GeV/*c*. The last two columns list the average values of $N_{trk}^{offline}$ as well as the average of $N_{trk}^{corrected}$, the event multiplicity corrected for all detector and algorithm inefficiencies.

Figure 7: 2-D two-particle correlation functions for 7 TeV pp (a) minimum bias events with $p_T > 0.1 \text{ GeV}/c$, (b) minimum bias events with $1 < p_T < 3 \text{ GeV}/c$, (c) high multiplicity ($N_{\text{trk}}^{\text{offline}} \ge 110$) events with $p_T > 0.1 \text{ GeV}/c$ and (d) high multiplicity ($N_{\text{trk}}^{\text{offline}} \ge 110$) events with $1 < p_T < 3 \text{ GeV}/c$. The sharp near-side peak from jet correlations is cut off in order to better illustrate the structure outside that region.

arXiv:1009.4122v1 [hep-ex] 21 Sep 2010