

Detailed HBT measurement with respect to the Event plane in Au+Au 200 GeV collisions at PHENIX

Takafumi Niida for the PHENIX Collaboration University of Tsukuba

日本物理学会第68回年次大会

. Niida JPS spring, Mar.29, 2013

HBT Interferometry

HBT effect is quantum interference between two identical particles.

R. Hanbury Brown and R. Twiss

 \diamond In 1956, they measured the angular diameter of Sirius.

Goldhaber et al.

In 1960, they observed the correlations among identical pions in p+anti-p collision independent of HBT.

HBT with respect to Reaction Plane

- Azimuthal HBT can give us the source shape at freeze-out.
- Final eccentricity is determined by initial eccentricity, velocity profile and expansion time.
- Very useful tool to investigate space-time evolution in HI !

က

Azimuthal HBT w.r.t 3rd-order event plane

Higher-order flow v_n and Event plane Ψ_n

 $+2v_3\cos^3(\phi-\Psi_3)$

$$+2v_4\cos 4(\phi - \Psi_4)$$

$$v_n = \langle \cos n(\phi - \Psi_n) \rangle$$

Is the deformation due to initial fluctuations is preserved until freeze-out?

Measurement by PHENIX Detectors

3-dimensional HBT analysis

Comparison of 2nd and 3rd order component

In 0-10%, R_{out} have stronger oscillation for Ψ_2 and Ψ_3 than R_{side}

- \diamond Does the emission duration depend on azimuthal angle ?
- \diamond Different sensitivity for possible sources to make the oscillation ?

T. Niida JPS spring, Mar.29, 2013

Oscillation of R_s

Relative amplitude of R_s for 2nd-order is used to represent "Eccentricity" at freeze-out

Strong expansion to in-plane direction, but still elliptical shape !

What does it indicate? Zero triangularity?

Simulation for Triangular shape

Main possible sources to make Ψ_3 dependence of HBT radii

- Spatial triangular shape in expanding source
- \diamond Triangular flow v₃

Setup of Monte-Carlo Simulation

- Assuming Woods-Saxon distribution
- \diamond Triangular shape controlled by "e₃"
- \diamond Triangular flow controlled by " β_3 "
 - \checkmark β₀ for radial flow is fixed as 0.8.

$$R_{xy} = R(1 - e_3 \cos(3\Delta\phi))$$
$$\beta_{\mathcal{T}} = \tanh(\rho)$$

$$\rho = \tanh^{-1} [\beta_0 + \beta_3 \cos(3\Delta\phi)] (-1)$$

HBT correlation:
$$1 + \cos(\Delta r \times \Delta p)$$

- \Rightarrow p_T spectra with T_f = 160 MeV
- No Coulomb interaction, no opacity

Simulation Results

Static source

 No oscillation for triangular shape
 Expanding source
 Triangular shape

 Oscillation appears !
 Spherical shape
 β₃ makes oscillation !

Simulation Results

Oscillation is determined by triangular shape and β₃

- Zero oscillation does not necessarily indicate the spherical source
 - \diamond Data is close to the situation with e₃<0 and finite β_3
 - Negative e₃ may indicate that initial triangular deformation is modified by triangular flow

Summary

Azimuthal HBT radii w.r.t v₃ plane

♦ First measurement of Ψ₃ dependent HBT radii have been presented.
♦ Oscillation of R_s is very weak, almost zero or slightly negative sign.

- $\diamond R_o$ clearly has finite oscillation in most central collisions.
 - Different emission duration for azimuthal angle ?

Monte-Carlo simulation of HBT for triangular source

- $\diamond \Psi_3$ dependence of HBT radii will be determined by the balance of triangular flow and spatial triangularity.
- ↔Data in 0-10% is close to the source with negative e₃ and finite β₃. Initial triangular deformation may be modified by triangular flow.

Back up

spring,

Niida

Model Calculations

Both models predict weak oscillation will be seen in R_{side} and R_{out.}

BW ▷ Opposite sign of R_{side} and R_{out} AMPT ▷ Same sign of R_{side} and R_{out}

Centrality dependence of v_3 and ε_3

Azimuthal HBT w.r.t v₂ plane

Initial spatial eccentricity

Final eccentricity can be measured by azimuthal HBT

It depends on initial eccentricity, pressure gradient, expansion time, and velocity profile, etc.

♦Good probe to investigate system evolution

Azimuthal HBT w.r.t v₃ plane

Final triangularity could be observed by azimuthal HBT w.r.t v₃ plane(Ψ₃) if it exists at freeze-out

♦ Related to initial triangularity, v₃, and expansion time, etc.
 ♦ Detailed information on space-time evolution can be obtained

3D HBT radii

- "Out-Side-Long" system
- Bertsch-Pratt parameterization

Core-halo model

 Particles in core are affected by coulomb interaction

 $C_2 = C_2^{core} + C_2^{halo}$

=
$$N[\lambda(1+G)F]+[1-\lambda]$$

 $G = \exp(-R_{inv}^2 q_{inv}^2)$

$$= \exp(-R_{side}^{2}q_{side}^{2} - R_{out}^{2}q_{out}^{2} - R_{long}^{2}q_{long}^{2} - 2R_{os}^{2}q_{side}q_{out})$$

Analysis method for HBT

Correlation function

$$C_2 = \frac{R(q)}{M(q)}$$

Ratio of real and mixed q-distribution of pairs
 q: relative momentum

Correction of event plane resolution

U.Heinz et al, PRC66, 044903 (2002)

Coulomb correction and Fitting

- ♦ By Sinyukov's fit function
- ♦ Including the effect of long lived resonance decay

$$C_2 = C_2^{core} + C_2^{halv}$$

=
$$N[\lambda(1+G)F] + [1-\lambda]$$

$$G = \exp(-R_{side}^2 q_{side}^2 - R_{out}^2 q_{out}^2 - R_{long}^2 q_{long}^2 - 2R_{os}^2 q_{side} q_{out})$$

Eccentricity at freeze-out

ε_{final}≈ ε_{initial}/2 for pion

Indicates that source expands to in-plane direction, and still elliptical shape
 PHENIX and STAR results are consistent

ε_{final}≈ε_{initial} for kaon

 \diamond Kaon may freeze-out sooner than pion because of less cross section

 \Rightarrow Need to check the difference of m_T between π/K ?

Azimuthal HBT radii w.r.t Ψ₃

- R_{side} is almost flat
- R_{out} have a oscillation in most central collisions

2013

Relative amplitude of HBT radii

- Similar definition with "final eccentricity"
- Relative amplitude of R_{out} increases with increasing N_{part}

Freeze-out parameters extracted by Blast wave model

Contour plot ρ_n vs s_n

spri

Parameter Search of β₃ vs e₃

Difference between data and simulation are shown as contour plot

 $rac{1}{2}$ v₃ flow may overcome the initial triangular deformation !

T . Niida JPS spring, Mar.29, 20

Summary

Azimuthal HBT radii w.r.t v₃ plane

First measurement of \$\Psi_3\$ dependent HBT radii have been presented.
Oscillation of \$\R_s\$ is very weak, almost zero or slightly negative sign.

- $\diamond R_o$ clearly has finite oscillation in most central collisions.
 - Different emission duration for azimuthal angle ?

Monte-Carlo simulation of HBT for triangular source

- $\Rightarrow \Psi_3$ dependence of HBT radii will be determined by the balance of triangular flow and spatial triangularity.
- R_s and v₃ indicates that the parameter e₃ has a zero to negative value. Initial triangular deformation may be modified by triangular flow.
- $\diamond R_o$ oscillation doesn't seem to be explained only by e_3 and β_3 .
 - ✓ Related to different sensitivity to β_3 between R_s and R_o?
 - ✓ Different emission duration for azimuthal angle ?