Measurement of Quantum Interference of Two Identical Particles with respect to the Event Plane in Relativistic Heavy Ion Collisions at RHIC-PHENIX

新井田 貴文
数理物質科学研究科 物理学専攻
高エネルギー原子核実験グループ
博士論文予備審査 4/22/2013

Outline

outline

Introduction

- ♦ HBT Interferometry
- Motivation

Analysis

- ♦ PHENIX Detectors
- ♦ Analysis Method for HBT

Results & Discussion

- ♦ HBT measurement with respect to 2nd-/3rd-order event plane
- ♦ Blast-wave model
- Monte-Carlo simulation

Summary

Introduction

Introduction

Introduction

Quark Gluon Plasma (QGP)

http://www.scientificamerican.com/

4

Relativistic Heavy Ion Collisions

Relativistic Heavy Ion Collider is an unique tool to create QGP.

2001 **♦** Au+Au 130GeV 2002 Au+Au, p+p 200GeV 🔥 d+Au 200GeV, p+p 20GeV 2003 Au+Au 200, 62.4GeV 2004 Cu+Cu 200, 62.4, 22.4Ge 2005 2006 p+p 200, 62.4GeV 2007 Au+Au 200Ge d+Au, p+p 200Ge 2008 p+p 200, 500G 2009 Au+Au 200, 62.4 2010 Au+Au 200, 27, 🤒 2011 U+U 193GeV, Cu+Au 200GeV 2012

Energy density

 \circ Lattice QCD calculation T_c ~ 170 MeV ϵ_c ~ 1 GeV/fm³

u+An, U+U

 \circ Au+Au 200GeV @RHIC $\epsilon_{Bj} \sim 5 \text{ GeV/fm}^3 > \epsilon_c$

Introduction

Space-Time Evolution

HBT Interferometry

HBT effect is quantum interference between two identical particles.

R. Hanbury Brown and R. Twiss

 \diamond In 1956, the angular diameter of Sirius was measured.

Goldhaber *et al*.

 $\Rightarrow \text{In 1960, correlation among identical pions in p+p collision was observed.}$ wave function for
2 bosons(fermions): $\Psi_{12} = \frac{1}{\sqrt{2}} [\Psi(x_1, p_1)\Psi(x_2, p_2) \pm \Psi(x_2, p_1)\Psi(x_1, p_2)]$ $C_2 = \frac{P(p_1, p_2)}{P(p_1)P(p_2)} \approx 1 + |\tilde{\rho}(q)|^2 = 1 + \exp(-R^2q^2)$ spatial distribution ρ

Introduction

What do HBT radii depend on ?

Azimuthal angle dependence

HBT w.r.t Reaction Plane give us source shape at freeze-out.

RP defined by beam axis and vector between centers of colliding nuclei

Final eccentricity is determined by initial eccentricity, pressure gradient(velocity profile) and expansion time etc.

Initial anisotropy causes momentum anisotropy(v₂)

Higher Harmonic Flow and Event Plane

- Initial density fluctuations cause higher harmonic flow v_n
- Azimuthal distribution of emitted particles:

$$\frac{V}{\phi} \propto 1 + 2v_2 \cos 2(\phi - \Psi_2) + 2v_3 \cos 3(\phi - \Psi_3) + 2v_4 \cos 4(\phi - \Psi_4)$$

$$v_n = \langle \cos n(\phi - \Psi_n) \rangle$$

- v_n : strength of higher harmonic flow
- Ψ_n : higher harmonic event plane
 - : azimuthal angle of emitted particles

Introduction

Motivation

Study the properties of space-time evolution of the heavy ion collision via azimuthal HBT measurement.

- Measurement of charged pion/kaon HBT radii with respect to 2ndorder event plane, and comparison of the particle species
- Measurement of HBT radii with respect to 3rd-order event plane to reveal the detail of final state and system evolution.

My Activity

3 years later (Something happened!!)

Analysis

Analysis

PHENIX Experiment

Analysis

Analysis

PHENIX Detectors

Beam-Beam Counter (|η|**=3~4)** Quartz radiator+64PMTs

Zero Degree Calorimeter Spectator neutron energy

Central arms ($|\eta| < 0.35$)

DC, PCs, TOF, EMCAL

South

Reaction Plane Detector (|η|=1~2.8) 2 rings of 24 scintillators

- ⇒ Minimum Bias Trigger
- ⇒ Start time
- ⇒ Collision z-position
- ⇒ Centrality
- ⇒ Event Planes
- ⇒ Tracking, Momentum
- ⇒ Particle Identification

collision point

North

beam line

Centrality

Centrality is used to classify events instead of impact parameter.

- ♦ BBC measures charged particles from participant.
- centrality is defined in terms of a percentile
 0%: most central 92%:most peripheral

Analysis

Event Plane

Resolution of Event planes

24 scintillator segments

$$\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{\Sigma w_i \cos(n\phi_i)}{\Sigma w_i \sin(n\phi_i)} \right)$$

- Event plane was determined by Reaction Plane Detector
 - ↔Resolution: <cos(n(Ψ_n-Ψ_{real}))> n=2 : ~ 0.75 n=3 : ~ 0.34
 - Determined by anisotropic flow itself

Track Reconstruction

Drift Chamber

Momentum determination

$$p_T \simeq rac{K}{lpha}$$
 K: field integral $lpha$: incident angle

Analysis

Pad Chamber (PC1)

Associate DC tracks with hit positions on PC1

 \checkmark p_z is determined

- Outer detectors (PC3,TOF,EMCal)
- ♦ Extend the tracks to outer detectors

Particle IDentification

EMC-PbSc is used.

timing resolution ~ 600 ps
Time-Of-Flight method

$$m^2 = p^2 \left(\left(\frac{ct}{L}\right)^2 - 1 \right)$$

p: momentum L: flight path length t: time of flight

Charged π/K within 2σ

Takafumi Niida, PhD defense, Apr.22, 20

Correlation Function

Experimental Correlation Function C₂ is defined as:

- \Rightarrow R(q): **R**eal pairs at the same event.
- \Rightarrow M(q): **M**ixed pairs selected from different events.

Event mixing was performed using events with similar z-vertex, centrality, E.P.

$$C_2 = \frac{R(\mathbf{q})}{M(\mathbf{q})}$$
$$\mathbf{q} = \mathbf{p_1} - \mathbf{p_2}$$

 Real pairs include HBT effects, Coulomb interaction and detector inefficient effect.
 Mixed pairs doesn't include HBT and Coulomb effects.

Analysis

Pair Selection

Ghost Tracks

A single particle is reconstructed as two tracks
Merged Tracks

Two particles is reconstructed as a single track

Coulomb Interaction

Coulomb repulsion for like-sign pairs reduces pairs at low-q.

♦ Estimated by Coulomb wave function

$$\left[-\frac{\hbar^2 \nabla^2}{2\mu} + \frac{Z_1 Z_2 e^2}{r}\right] \Psi(r) = E \Psi(r) \qquad \gamma = \frac{m e^2}{\hbar^2 q} Z_1 Z_2$$

The correction was applied in fit function for C₂

Analysis

3D HBT radii

"Out-Side-Long" frame

♦ Bertsch-Pratt parameterization

 \downarrow Longitudinal Center of Mass System (p_{z1}=p_{z2})

$$C_{2} = 1 + \lambda G \qquad \vec{k}_{T} = \frac{1}{2}(\vec{p}_{T1} + \vec{p}_{T2}) \\ \vec{q}_{out} \parallel \vec{k}_{T}, \vec{q}_{side} \perp \vec{k}_{T} \\ = \exp(-R_{x}^{2}q_{x}^{2} - R_{y}^{2}q_{y}^{2} - R_{z}^{2}q_{z}^{2} - \Delta\tau^{2}q_{0}^{2}) \\ = \exp(-R_{side}^{2}q_{side}^{2} - R_{out}^{*2}q_{out}^{2} - R_{long}^{2}q_{long}^{2} - \Delta\tau^{2}q_{0}^{2}) \\ \overset{\text{LCMS}}{\approx} \exp(-R_{side}^{2}q_{side}^{2} - (\underline{R}_{out}^{*2} + \beta_{T}\Delta\tau^{2})q_{out}^{2} - R_{long}^{2}q_{long}^{2}) \\ = \mathbf{R}_{out}^{2}$$

 $G = \exp(-R_{side}^2 q_{side}^2 - R_{out}^2 q_{out}^2 - R_{long}^2 q_{long}^2 - 2R_{os}^2 q_{side} q_{out})$

beam

 $\begin{array}{ll} \lambda & : \mbox{chaoticity} \\ R_{side} & : \mbox{transverse HBT radius} \\ R_{out} & : \mbox{transverse HBT radius} + \Delta \tau \ (\mbox{emission duration}) \\ R_{long} & : \mbox{longitudinal HBT radius} \\ R_{os} & : \mbox{cross term for } \phi \mbox{-dependent analysis} \end{array}$

Analysis

Riong

Detector

R_{side}

What do R_s and R_o represent ?

Analysis Correction of Event Plane Resolution

Smearing effect by finite resolution of the event plane

20

15

10

0.5 1

1.5 2

- Resolution correction
- ♦ correction for q-distribution
 PRC.66, 044903(2002)
 ♦ Check by simulation

 $^{2.5}\Delta\phi$ [rad]

- Uncorrected w.r.t EP
- Corrected w.r.t EP

Consistency check with the past result

Extracted HBT radii are compared to PHENIX data.

Both my result and PHENIX result are consistent within systematic error.

26

Results & Discussion

Results & Discussion

Results & Discussion

Azimuthal HBT w.r.t 2nd order event plane

Initial spatial eccentricity

What is final eccentricity ?

Centrality dependence of pion HBT radii w.r.t Ψ_2

- Oscillation are seen for R_{side}, R_{out}, R_{os.}
- R_{out} has stronger oscillation than R_{side} in all centrality.

Flow anisotropy? or Emission duration depend on azimuthal angle?
 Difference of "width" and "depth"?

Centrality dependence of kaon HBT radii w.r.t $\Psi_{\mathbf{2}}$

Result of charged kaons show similar trends!

Results & Discussion

Eccentricity at freeze-out

- ♦ Consistent with STAR result.
- ♦ This Indicates that source expands to in-plane direction, and still elliptical shape.

ε_{final}≈ε_{initial} for kaon

 \diamond Kaon may freeze-out sooner than pion because of less cross section.

 \diamond Due to the difference of m_{T} between π/K ?

Results & Discussion

$m_T = \sqrt{k_T^2 + m^2}$ ^Efinal Au+Au 200GeV 0.4 **π**⁺**π**⁺**+**π⁻π⁻ **0-20%** out-of-plane π⁺π⁺**+**π⁻π⁻ **20-60%** 0.3 K⁺K⁺+K⁻K⁻ 0-20% K⁺K⁺+K⁻K⁻20-60% 0.2 0.1 in-plane 0.5 $< m_T > [GeV/c]$

ε_{final} of π increases with m_T in most/mid-central collisions
 Looking at the variation of the shape of the emission region ?
 Still difference between π/K in 20-60% even at the same m_T
 Indicates sooner freeze-out time of K than π ?

m_T dependence of ε_{final}

Results & Discussion

m_T dependence of relative amplitude

Relative amplitude of R_{side} and R_{out} show m_T dependence

 $\Rightarrow R_o$ in 0-20% doesn't depend on m_T?

Difference between π/K is similar for other parameters

Results & Discussion

Interpretation by Blast wave model

Hydrodynamic model assuming radial flow

 \diamond Well described at low p_T for p_T spectra & elliptic flow

 \diamond Assuming freeze-out takes place for all hadrons at the same time

 \diamond Freeze-out condition is treated as free parameters.

7 free parameters * box profile is assumed as spatial density

: temperature at freeze-out

 $\rho_{0,}\rho_{2}$

 T_{f}

: transverse rapidity R_{x} , R_{y} : transverse sizes (shape)

: system lifetime, emission duration $\tilde{r} = \sqrt{(\frac{r\cos(\phi)}{R_x})^2 + (\frac{r\sin(\phi)}{R_y})^2}$ τ₀, Δτ

 \Rightarrow Assuming a Gaussian distribution peaked at τ_0 and with a width $\Delta \tau$, and source size doesn't change with τ . $\frac{dN}{d\tau} \sim \exp\left(-\frac{(\tau - \tau_0)^2}{2\Delta\tau^2}\right)$

 \Rightarrow Spatial(R_v/R_x) and flow(ρ_2) anisotropy make HBT oscillation.

PRC 70, 044907 (2004)

 $\rho(r,\phi) = \tilde{r}[\rho_0 + \rho_2 \cos(2\phi)]$

Fit by Blast wave model

Transverse momentum distribution (p_T spectra) and v_2 are used to reduce parameter.

- **1. Fit p_T spectra to obtain T_f and ρ₀** spectra data from PHENIX (PRC69,034909(2004))
- 2. Fit v_2 and HBT radii for all k_T simultaneously - ρ_2 , R_x , R_y , τ_0 , $\Delta \tau$ are obtained.

Results & Discussion

Extracted freeze-out parameters

- ρ₂ and ellipticity(R_y/R_x) increase with decreasing N_{part}
 - \diamond Reasonable in terms of v₂ and ϵ_{f}
- τ and Δτ increases with increasing N_{part}
 - ♦Finite emission duration (1~2fm/c)
 - Shorter than typical hydrodynamic freeze-out time (~15fm/c)

Comparison of π and K

π and K was recalculated using extracted parameters

Data and BW doesn't match qualitatively for relative amplitudes

Large ε_f of K in 20-60% cannot be explained well by BW

Results & Discussion

Azimuthal HBT w.r.t 3rd order event plane

Note that no anisotropy is observed by HBT in static source.

Results & Discussion

Pion HBT radii w.r.t Ψ_3

- In 0-10%, R_s is almost flat, while R_o has strong oscillation
 Emission duration? Flow anisotropy?
- For n=3, R_s has the same sign to R_o in 20-30%

Relative amplitude of R_{side} and R_{out}

Initial ε_n is calculated by Monte-Carlo Glauber simulation

Results & Discussion

 \diamond Initial ϵ_n increases with going to peripheral collisions

Interpretation by Monte-Carlo simulation

Setup of simulation

- ♦ Spatial distribution
 - Assuming Woods-Saxon distribution
 - ✓ Spatial shape controlled by "e_n"
- ♦ Transverse flow
 - ✓ Radial flow with velocity β_0
 - ✓ Flow anisotropy controlled by " β_n "
 - Boost to radial direction
- \Rightarrow HBT correlation: 1+cos(**Δr Δp**)
- \Rightarrow m_T distribution with T_f = 160 MeV
- ♦ No Coulomb interaction, no opacity

$$R = R_0(1 - e_n \cos(n\Delta\phi))$$

 $\beta_T = \tanh(\rho)$

$$\rho = \tanh^{-1} [\beta_0 + \beta_n \cos(n\Delta\phi)] (\frac{r}{R})^2$$

Simulation check

Static source

 No oscillation for triangular shape
 Expanding source
 Triangular shape

 Oscillation appears !
 Spherical shape
 β₃ makes oscillation !

Parameter Search of β_2 vs e_2

Difference between data and simulation are shown as contour plot

 \diamond Contour lines for R_µ are set to be larger than the systematic error of data.

• Overlap of v_2 and R_s indicates $e_2 \ge 0$.

 \diamond Centrality dependences of β_2 and e_2 are similar to ρ_2 and R_y/R_x in BW.

- Regions of R_s and R_o don't match.
 - \diamond Strong oscillation of R_o cannot be explained by flow and geometry ?
 - \diamond Related to the emission duration ?

Parameter Search of β_3 vs e_3

Difference between data and simulation are shown as contour plot

 \diamond Contour lines for R_u are set to be the systematic error of data.

• Overlap of v_3 and R_s indicates $e_3 \leq 0$.

 \diamond Centrality dependence of β_3 is similar to that of v_3 .

Negative e₃ indicates the opposite shape to initial shape

Triangular flow may overcome the initial triangular deformation !

Summary(1)

Azimuthal HBT radii w.r.t 2nd-order event plane

- $\diamond \epsilon_{\text{final}}$ of π is $\sim \epsilon_{\text{initial}}/2$, which indicates the strong expansion to in-plane direction and still elliptical shape.
- $\diamond \epsilon_{\text{final}}$ of π increases with increasing m_T , but not enough to explain the difference between π/K .
 - Difference may indicate faster freeze-out of K due to less cross section.
- Strong oscillation of R_{out} was seen in central event. Relative amplitude of R_{out} in 0-20% doesn't depend on m_{T.}
 - Related to flow anisotropy or emission duration depending on azimuthal angle.

Blast-wave model

- \diamond Blast-wave fit for pion HBT using p_T spectra and v₂
- Extracted system lifetime is shorter than hydrodynamic calculations. Finite emission duration
- $\diamond m_{T}$ dependence of π and the difference between $\pi\&K$ cannot be explained well by BW with extracted parameters
 - Need to compare a realistic model (3D-hydro+cascade?)

Summary(2)

Azimuthal HBT radii w.r.t 3rd-order event plane

♦ First measurement of azimuthal HBT w.r.t 3rd-order event plane

♦ Relative amplitudes of R_{side} seem to have zero~negative value, while those of R_{out} have zero~positive value.

Monte-Carlo simulation

 \Rightarrow Elliptical and triangular source was simulated changing the strength of spatial(e_n) and flow(β_n) anisotropy.

♦ Parameter search was performed comparing data to simulation.

- ✓ Searched e_2 and β_2 show similar trend with Blast-wave fit result.
- ✓ Searched e_3 and β_3 indicates that the sign of initial triangular anisotropy may be changed by triangular flow.
- Need to compare with a event-by-event hydrodynamic model for the comprehensive understanding of the data.

Back up

Takafumi Niida, PhD defense, Apr.22, 2013

Initial spatial anisotropy by Glauber model

Initial eccentricity and triangularity increase with centrality going from central to peripheral.

Comparison of 2nd and 3rd order component

- In 0-10%, R_{out} have stronger oscillation for Ψ_2 and Ψ_3 than R_{side}
 - \diamond This oscillation indicates different emission duration between 0°/60° w.r.t $\Psi_{3~?}$ or depth of the triangular shape ?

Azimuthal HBT radii w.r.t Ψ_3

R_{side} is almost flat

R_{out} have a oscillation in most central collisions

Boost angle

Boost angle is set to be :

radial direction of the particle position (radial boost)

e_2

Difference between data and simulation are shown as contour plot

 \diamond Contour lines for R_u are set to be larger than the systematic error of data.

Similar trend can be seen between two conditions!!

S

e_3

Difference between data and simulation are shown as contour plot

 \diamond Contour lines for R_u are set to be larger than the systematic error of data.

HBT vs Higher Harmonic Event Plane

The idea is to expand azimuthal HBT to higher harmonic event planes.

may show the fluctuation of the shape at freeze-out.
 provide more constraints on theoretical models about the system evolution.

Hydrodynamic model calculation

Introduction

Comparison of models and the past HBT results

★ STAR, Au+Au 200 GeV

- First-order phase transition with no prethermal flow, no viscosity
- Including initial flow
- Using stiffer equation of state
- Adding viscosity
- Including all features

Hydrodynamic model can reproduce the past HBT result!

HBT can provide constraints on the model!

Centrality dependence of v_3 and ε_3

Image of initial/final source shape

Spatial anisotropy by Blast wave model

Extracted parameters by different Blast wave model

Blast wave fit was performed for spectra and v_n

v₃ breaks degeneracy

v₃ provides new constraint on hydro-model parameters

 \Rightarrow Glauber & $4\pi\eta/s=1$: works better

 \diamond KLN & $4\pi\eta/s=2$: fails

Relative amplitude of HBT radii

Relative amplitude is used to represent "triangularity" at freeze-out Relative amplitude of Rout increases with increasing Npart

☆ Triangular component at freezeout seems to vanish for all centralities(within systematic error)

2013

 $\pi^{+}\pi^{+}+\pi^{-}\pi^{-}$

Azimuthal HBT radii for kaons

- Observed oscillation for R_{side}, R_{out}, R_{os}
- Final eccentricity is defined as ε_{final} = 2R_{s,2} / R_{s,0}

 $\Rightarrow R_{s,n}^2 = \left\langle R_{s,n}^2(\Delta\phi)\cos(n\Delta\phi) \right\rangle \text{ PRC70, 044907 (2004)}$

201:

def

k_T dependence of azimuthal pion HBT radii in 20-60%

Oscillation can be seen in R_s, R_o, and R_{os} for each kT regions

63

k_T dependence of azimuthal pion HBT radii in 0-20%

64

The past HBT Results for cl

 No significant difference between both species

Takafumi Niida, PhD defense, Apr.22, 2013

S

G

Model predictions

Both models predict weak oscillation will be seen in R_{side} and R_{out.}

