Measurement of Quantum Interference of Two Identical Particles with respect to the Event Plane in Relativistic Heavy Ion Collisions at RHIC-PHENIX

Takafumi Niida

High Energy Nuclear Physics Group

TAC seminar, Dec 20th/2012

outline

Introduction

- ♦ HBT Interferometry
- ♦ Motivation

Analysis

- ♦ PHENIX Detectors
- Analysis Method

Results & Discussion

HBT measurement with respect to 2nd-/3rd-order event plane
 Blast-wave model

Summary

Quark Gluon Plasma (QGP)

http://www.scientificamerican.com/

4

Relativistic Heavy Ion Collisions

Relativistic Heavy Ion Collider is an unique tool to create QGP.

Brookhaven National Laboratory in U.S.A
 Two circular rings (3.8 km in circumstance)
 Various energies: 19.6, 27, 39, 62.4, 200 GeV
 Various species: p+p, d+Au, Cu+Cu, Cu+Au, Au+Au,

Year Species/Energy Au+Au 130GeV 2001 2002 Au+Au, p+p 200Ge 2003 20Ge 1 200GeV. p+p 2004 Au 200, 62,4G 2005 Ge 2006 Au+Au 200GeV 2007 2008 d+Au, p+p 200ceV p+p 200, 500GeV 2009 Au+Au 200, 62.4, 39, 7.7GeV 2010 Au+Au 200, 27, 19.6GeV 2011 U+U 193GeV, Cu+Au 200GeV 2012

 $\begin{array}{l} \underline{\textit{Energy density}}\\ \circ \text{ Lattice QCD calculation}\\ T_c \sim 170 \text{ MeV}\\ \epsilon_c \sim 1 \text{ GeV/fm}^3 \end{array}$

 \circ Au+Au 200GeV @RHIC $\epsilon_{Bj} \sim 5 \text{ GeV/fm}^3 > \epsilon_c$

LO

Space-Time Evolution

HBT Interferometry

HBT effect is quantum interference between two identical particles.

R. Hanbury Brown and R. Twiss

 \diamond In 1956, they measured the angular diameter of Sirius.

Goldhaber et al.

In 1960, they observed the correlations among identical pions in p+anti-p collision independent of HBT.

What does HBT radii depend on ?

Centrality

 \diamond HBT radii depends on the size of collision area.

Average pair momentum k_T

♦ Case of "static source": measuring the whole size

Case of "expanding source" : measuring "homogeneity region"

Comparison of models and the past HBT results

★ STAR, Au+Au 200 GeV

- First-order phase transition with no prethermal flow, no viscosity
- Including initial flow
- Using stiffer equation of state
- Adding viscosity
- Including all features

Hydrodynamic model can reproduce the past HBT result!

HBT can provide constraints on the model!

HBT with respect to Reaction Plane

- Azimuthal HBT can give us the source shape at freeze-out.
- Final eccentricity is determined by initial eccentricity, pressure gradient(velocity profile) and expansion time etc.

Higher Harmonic Flow and Event Plane

- Initial density fluctuations cause higher harmonic flow v_n
- Azimuthal distribution of emitted particles:

$$\frac{dN}{d\phi} \propto 1 + 2v_2 \cos 2(\phi - \Psi_2) + 2v_3 \cos 3(\phi - \Psi_3) + 2v_4 \cos 4(\phi - \Psi_4)$$
$$v_n = \langle \cos n(\phi - \Psi_n) \rangle$$

- $v_{\mathsf{n}}~$: Strength of higher harmonic flow
- Ψ_n : Higher harmonic event plane
- ϕ : Azimuthal angle of emitted particles

HBT vs Higher Harmonic Event Plane

The idea is to expand azimuthal HBT to higher harmonic event planes.

may show the fluctuation of the shape at freeze-out.
 provide more constraints on theoretical models about the system evolution.

Hydrodynamic model calculation

Motivation

Study the properties of time-space evolution of the heavy ion collision via azimuthal HBT measurement.

- Measurement of charged pion/kaon HBT radii with respect to 2ndorder event plane, and Comparison of the particle species
- Measurement of HBT radii with respect to 3rd-order event plane to reveal the detail of final state and system evolution.

My Activity

Analysis

PHENIX Experiment

Analysis

Analysis

PHENIX Detectors

Beam-Beam Counter (|η|=3~4) Quartz radiator+64PMTs

Zero Degree Calorimeter Spectator neutron energy

Central arms ($|\eta| < 0.35$)

DC, PCs, TOF, EMCAL

South

Reaction Plane Detector (|η|=1~2.8) 2 rings of 24 scintillators

- ⇒ Minimum Bias Trigger
- ⇒ Start time
- ⇒ Collision z-position
- ⇒ Centrality
- ⇒ Event Planes
- ⇒ Tracking, Momentum
- ⇒ Paticle Identification

collision point

North

beam line

Centrality

Centrality is used to classify events instead of impact parameter.

♦ 0% to 100% ←→ central to peripheral collision
 BBC measures charged particles coming from participant.

Analysis

Event Plane

Resolution of Event Plane

n=2 : ~ 0.75

n=3 : ~ 0.34

10

Track Reconstruction

Central Arms

Drift Chamber

Momentum determination

$$p_T \simeq rac{K}{lpha}$$
 K: field integral $lpha$: incident angle

Pad Chamber (PC1)

- Associate DC tracks with hit positions on PC1
- Outer detectors (PC3,TOF,EMCal)
- $\diamond \mathsf{Extend}$ the tracks to outer detectors

Analysis

Particle IDentification

EMC-PbSc is used.

timing resolution ~ 600 ps
Time-Of-Flight method

$$m^2 = p^2 \left(\left(\frac{ct}{L}\right)^2 - 1 \right)$$

p: momentum L: flight path length t: time of flight

Charged π/K within 2σ

akafumi Niida, TAC seminar, Dec.20,

Correlation Function

Experimental Correlation Function C₂ is defined as:

- \Rightarrow R(q): Real pairs at the same event.
- \Rightarrow M(q): Mixed pairs selected from two different/similar events.

$$C_2 = \frac{R(\mathbf{q})}{M(\mathbf{q})}$$
$$\mathbf{q} = \mathbf{p_1} - \mathbf{p_2}$$

 R(q) includes HBT effects, Coulomb interaction and detector inefficient effect, while M(q) doesn't include HBT, Coulomb.

Analysis

3D HBT radii

"Out-Side-Long" system

- Bertsch-Pratt parameterization
- LCMS(Longitudinal Center of Mass System)
 frame is used.
 I (1)
 I (1

$$C_{2} = 1 + \lambda G \qquad k_{T} = \frac{1}{2}(p_{T1} + p_{T2}) \\ \vec{q}_{out} \parallel \vec{k}_{T}, \vec{q}_{side} \perp \vec{k}_{T} \\ = \exp(-R_{side}^{2}q_{side}^{2} - R_{out}^{2}q_{out}^{2} - R_{long}^{2}q_{long}^{2} - 2R_{os}^{2}q_{side}q_{out})$$

λ : chaoticity
 R_{side} : transverse size
 R_{out} : transverse size + emission duration
 R_{os} : cross term between "out" and "side"
 R_{long} : longtudinal size

R_{out} includes temporal information on emission duration of particles!

beam

Analysis

Rlong

out

Detector

 $\mathbf{R}_{\mathrm{side}}$

Analysis

Pair Selection

Ghost Tracks

A single particle is reconstructed as two tracks
Merged Tracks

Two particles is reconstructed as a single track

Coulomb Interaction

Coulomb repulsion for like-sign pairs reduces pairs at low-q.

Analysis

♦ Estimated by Coulomb wave function

$$\left[-\frac{\hbar^2 \nabla^2}{2\mu} + \frac{Z_1 Z_2 e^2}{r}\right] \Psi(r) = E \Psi(r) \qquad \gamma = \frac{m e^2}{\hbar^2 q} Z_1 Z_2$$

The correction was applied in fit function for C₂

Analysis Correction of Event Plane Resolution

Smearing effect by finite resolution of the event plane

Results &

Discussion

Results & Discussion

Azimuthal HBT w.r.t 2nd order event plane

Initial spatial eccentricity

Momentum anisotropy v₂

What is the final eccentricity ?

Centrality dependence of pion HBT radii w.r.t $\Psi_{\mathbf{2}}$

- Oscillation are seen for R_{side}, R_{out}, R_{os.}
- R_{out} has strong oscillation in all centrality.

Centrality dependence of kaon HBT radii w.r.t $\Psi_{\mathbf{2}}$

charged kaons also have similar trends!

Results & Discussion

Eccentricity at freeze-out

ε_{final}≈ε_{initial}/2 for pion

This Indicates that source expands to in-plane direction, and still elliptical shape.
 PHENIX and STAR results are consistent.

ε_{final}≈ ε_{initial} for kaon

 \diamond Kaon may freeze-out sooner than pion because of less cross section.

 \diamond Due to the difference of m_T between π/K ?

Results & Discussion

m_T dependence of ε_{final}

 ϵ_{final} of pions increases with m_T in most/mid-central collisions

Still difference between π/K in 20-60% even at the same m_T \Rightarrow Indicates sooner freeze-out time of K than π ?

m_T dependence of relative amplitude

Relative amplitude of R_{out} in 0-20% doesn't depend on m_T

 \diamond Does it indicate the difference of emission duration between in-plane and out-of-plane at low m_T?

Results & Discussion

Azimuthal HBT w.r.t 3rd order event plane

Note that no anisotropy is observed by HBT in static source.

Azimuthal HBT radii w.r.t Ψ_{3}^{Res}

R_{side} is almost flat

R_{out} have a oscillation in most central collisions

Results & Discussion

Comparison of 2nd and 3rd order component

- In 0-10%, R_{out} have stronger oscillation for Ψ_2 and Ψ_3 than R_{side}
 - ↔This oscillation indicates different emission duration between 0°/60° w.r.t $Ψ_{3,?}$ or depth of the triangular shape ?

6

Relative amplitude of Rside

Relative amplitude of R_{side} w.r.t Ψ_3 is zero within systematic error.

The width of the "homogeneity" seems to be the same between 0°/60° w.r.t Ψ_3 unlike the depth(+emission duration).

Blast wave model

Hydrodynamic model assuming radial flow

♦ Well described at low p_T for spectra & elliptic flow
 ♦ Expand to HBT : PRC 70, 044907 (2004)
 ♦ Physical parameters are treated as free parameters.

7 free parameters

T_f

- : temperature at freeze-out
- $\rho_{0,} \rho_{2}$: transverse rapidity
- R_x , R_y : transverse sizes (shape)
- $\tau_0, \Delta \tau$: system lifetime and emission duration

$$\frac{dN}{d\tau} \sim \exp\left(-\frac{(\tau - \tau_0)^2}{2\Delta\tau^2}\right)$$

Assuming a Gaussian distribution peaked at τ_0 and with a width $\Delta \tau$, and source size doesn't change with τ .

$$\rho(r,\phi) = \tilde{r}[\rho_0 + \rho_2 \cos(2\phi)]$$

Fit by Blast wave model

Spectra and v₂ are used to reduce parameters.

 R_{out} and R_{os} doesn't seem to be fitted well. Need to plot the systematic error. In this model, $\Delta \tau$ doesn't depend on azimuthal angle.

Results & Discussion

Extracted freeze-out parameters

- Size(R_x , R_y) and R_y/R_x seem to be valid.
- τ and Δτ increases with going to centrality.

Summary

Azimuthal HBT radii w.r.t 2nd–order event plane

- \Rightarrow Final eccentricity increases with increasing m_T, but not enough to explain the difference between π/K .
 - Difference may indicate faster freeze-out of K[±] due to less cross section.
- \Rightarrow Relative amplitude of R_{out} in 0-20% doesn't depend on m_{T.}
 - It may indicate the difference of emission duration between in-plane and out-of-plane.
- Azimuthal HBT radii w.r.t 3rd-order event plane
- $\diamond R_{side}$ doesn't seem to have azimuthal dependence.
- ♦While R_{out} clearly has finite oscillation in most central collisions.
 - It may indicate the difference of emission duration between Δφ=0°/60° direction or depth of the triangular shape.

Balst wave model

System lifetime and emission duration seems to get longer in central collisions.

Back up

Centrality dependence of v_3 and ε_3

Analysis

PHENIX Detectors

Image of initial/final source shape

Spatial anisotropy by Blast wave model

Relative amplitude of HBT radii

Relative amplitude is used to represent "triangularity" at freeze-out
 Relative amplitude of Rout increases with increasing Npart

Triangular component at freezeout seems to vanish for all centralities(within systematic error)

PHENIX Preliminary

Au+Au 200GeV

π⁺π⁺+π⁻π⁻

Charged hadron v_n at PHENIX

PRL.107.252301

- v₂ increases with increasing centrality, but v3 doesn't
- v₃ is comparable to v₂ in 0-10%
- v₄ has similar dependence to v₂

v₃ breaks degeneracy

v₃ provides new constraint on hydro-model parameters

 \diamond Glauber & $4\pi\eta/s=1$: works better

 \diamond KLN & $4\pi\eta/s=2$: fails

Azimuthal HBT radii for kaons

- Observed oscillation for R_{side}, R_{out}, R_{os}
- Final eccentricity is defined as ε_{final} = 2R_{s,2} / R_{s,0}

 $\Rightarrow R_{s,n}^2 = \left\langle R_{s,n}^2(\Delta\phi)\cos(n\Delta\phi) \right\rangle \text{ PRC70, 044907 (2004)}$

in-plane

k_T dependence of azimuthal pion HBT radii in 20-60%

Oscillation can be seen in R_s, R_o, and R_{os} for each kT regions

S

k_T dependence of azimuthal pion HBT radii in 0-20%

52

The past HBT Results for charged pions and kaons

Centrality / m_T dependence have been measured for pions and kaons

♦ No significant difference between both species

centrality dependence

 m_{T} dependence

Analysis method for HBT

Correlation function

$$C_2 = \frac{R(q)}{M(q)}$$

Ratio of real and mixed q-distribution of pairs
 q: relative momentum

Correction of event plane resolution

U.Heinz et al, PRC66, 044903 (2002)

Coulomb correction and Fitting

- ♦ By Sinyukov's fit function
- Including the effect of long lived resonance decay

$$C_2 = C_2^{core} + C_2^{halv}$$

=
$$N[\lambda(1+G)F] + [1-\lambda]$$

$$G = \exp(-R_{side}^2 q_{side}^2 - R_{out}^2 q_{out}^2 - R_{long}^2 q_{long}^2 - 2R_{os}^2 q_{side} q_{out})$$

Azimuthal HBT radii for pions

- Observed oscillation for R_{side}, R_{out}, R_{os}
- Rout in 0-10% has oscillation

Different emission duration between in-plane and out-of-plane?

Model predictions

Both models predict weak oscillation will be seen in R_{side} and R_{out.}

6