Measurement of Quantum Interference of Two Identical Particles with respect to the Event Plane in Relativistic Heavy Ion Collisions at RHIC-PHENIX

Takafumi Niida
High Energy Nuclear Physics Group

TAC seminar, Dec 20th/2012
Introduction
- HBT Interferometry
- Motivation

Analysis
- PHENIX Detectors
- Analysis Method

Results & Discussion
- HBT measurement with respect to 2nd-/3rd-order event plane
- Blast-wave model

Summary
Introduction
Quark Gluon Plasma (QGP)

- State at a few µ-seconds after Big Bang
- Quarks and gluons are reconfined from hadrons

Probably here

- QGP will be created at extreme temperature and energy density

http://www.scientificamerican.com/
Relativistic Heavy Ion Collisions

- Relativistic Heavy Ion Collider is an unique tool to create QGP.
 - Brookhaven National Laboratory in U.S.A
 - Two circular rings (3.8 km in circumference)
 - Various energies: 19.6, 27, 39, 62.4, 200 GeV
 - Various species: p+p, d+Au, Cu+Cu, Cu+Au, Au+Au, U+U

<table>
<thead>
<tr>
<th>Year</th>
<th>Species/Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Au+Au 130GeV</td>
</tr>
<tr>
<td>2002</td>
<td>Au+Au, p+p 200GeV</td>
</tr>
<tr>
<td>2003</td>
<td>d+Au 200GeV, p+p 20GeV</td>
</tr>
<tr>
<td>2004</td>
<td>Au+Au 200, 62.4GeV</td>
</tr>
<tr>
<td>2005</td>
<td>Cu+Cu 200, 62.4, 22.4GeV</td>
</tr>
<tr>
<td>2006</td>
<td>p+p 200, 62.4GeV</td>
</tr>
<tr>
<td>2007</td>
<td>Au+Au 200GeV</td>
</tr>
<tr>
<td>2008</td>
<td>d+Au, p+p 200GeV</td>
</tr>
<tr>
<td>2009</td>
<td>p+p 200, 500GeV</td>
</tr>
<tr>
<td>2010</td>
<td>Au+Au 200, 62.4, 39, 7.7GeV</td>
</tr>
<tr>
<td>2011</td>
<td>Au+Au 200, 27, 19.6GeV</td>
</tr>
<tr>
<td>2012</td>
<td>U+U 193GeV, Cu+Au 200GeV</td>
</tr>
</tbody>
</table>

Energy density
- Lattice QCD calculation
 - $T_c \sim 170$ MeV
 - $\epsilon_c \sim 1$ GeV/fm3
- Au+Au 200GeV @RHIC
 - $\epsilon_{Bj} \sim 5$ GeV/fm$^3 > \epsilon_c$
Space-Time Evolution

1. Collision occurs
2. Partonic thermalization
3. Phase transition
 Hadronization
4. Chemical freeze-out
5. Thermal freeze-out

How fast the system thermalizes and evolves?
How much the system size?
What is the nature of phase transition?
HBT Interferometry

- **HBT effect** is quantum interference between two identical particles.
- **R. Hanbury Brown and R. Twiss**
 - In 1956, they measured the angular diameter of Sirius.
- **Goldhaber et al.**
 - In 1960, they observed the correlations among identical pions in p+anti-p collision independent of HBT.

\[C_2 = \frac{\left| \Psi_{12}(p_1, p_2) \right|^2}{\left| \Psi_1(p_1) \right|^2 \left| \Psi_2(p_2) \right|^2} \approx 1 + \left| \tilde{\rho}(q) \right|^2 \]

\[= 1 + \lambda \exp(-\Delta r^2 q^2) \]

\[q = p_1 - p_2 \quad [\text{GeV/c}] \]
What does HBT radii depend on?

- Centrality
 - HBT radii depends on the size of collision area.
- Average pair momentum k_T
 - Case of “static source”: measuring the whole size
 - Case of “expanding source”: measuring “homogeneity region”

\[
\vec{k}_T = \frac{1}{2}(\vec{p}_{T1} + \vec{p}_{T2})
\]

\[
\vec{q}_{out} \parallel \vec{k}_T, \vec{q}_{side} \perp \vec{k}_T
\]
Comparison of models and the past HBT results

Introduction

- STAR, Au+Au 200 GeV
- First-order phase transition with no prethermal flow, no viscosity
- Including initial flow
- Using stiffer equation of state
- Adding viscosity
- Including all features

PRL.102, 232301(2009)

Hydrodynamic model can reproduce the past HBT result!
HBT can provide constraints on the model!
HBT with respect to Reaction Plane

- Azimuthal HBT can give us the source shape at freeze-out.
- Final eccentricity is determined by initial eccentricity, pressure gradient (velocity profile) and expansion time etc.
Higher Harmonic Flow and Event Plane

- Initial density fluctuations cause higher harmonic flow v_n
- Azimuthal distribution of emitted particles:
 \[
 \frac{dN}{d\phi} \propto 1 + 2v_2 \cos 2(\phi - \Psi_2) + 2v_3 \cos 3(\phi - \Psi_3) + 2v_4 \cos 4(\phi - \Psi_4)
 \]
 \[
 v_n = \langle \cos n(\phi - \Psi_n) \rangle
 \]

v_n : Strength of higher harmonic flow
Ψ_n : Higher harmonic event plane plane
ϕ : Azimuthal angle of emitted particles
HBT vs Higher Harmonic Event Plane

- The idea is to expand azimuthal HBT to higher harmonic event planes.
 - may show the fluctuation of the shape at freeze-out.
 - provide more constraints on theoretical models about the system evolution.

Hydrodynamic model calculation

\[R_{ij}^2, \text{fm}^2 \]

\[\Psi_3 \]

S. Voloshin at QM2011

\[T=100[\text{MeV}], \rho=r' \rho_{\max}(1+\cos(n\phi)) \]
Motivation

- Study the properties of time-space evolution of the heavy ion collision via azimuthal HBT measurement.
 - Measurement of charged pion/kaon HBT radii with respect to 2nd-order event plane, and Comparison of the particle species
 - Measurement of HBT radii with respect to 3rd-order event plane to reveal the detail of final state and system evolution.
My Activity

<table>
<thead>
<tr>
<th>2006(M1)</th>
<th>2007(M2)</th>
<th>2010(D1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRPC construction</td>
<td>RXNP construction</td>
<td>Di-jet Calorimeter construction</td>
</tr>
<tr>
<td>Installed MRPC & RXNP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 years later

Azimuthal HBT analysis using Run4 data

Start azimuthal HBT analysis using Run7 data

<table>
<thead>
<tr>
<th>2011(D2)</th>
<th>2012(D3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talk WPCF2011</td>
<td>Talk JPS fall</td>
</tr>
<tr>
<td>Talk JPS spring</td>
<td>Talk HIC in LHC era</td>
</tr>
<tr>
<td>Talk QM2012</td>
<td>Poster Radon Workshop</td>
</tr>
</tbody>
</table>

Summer Challenge @KEK

Summer Challenge @KEK

Shift taking & Detector Expert for Run11 @BNL

Shift taking & Detector Expert for Run12 @BNL

preliminary result
Centrality dependence of π/K HBT w.r.t Ψ_2

preliminary result
Centrality dependence of π HBT w.r.t Ψ_3

preliminary result
m_T dependence of π HBT w.r.t Ψ_2
Analysis
PHENIX Detectors

- **Beam-Beam Counter** \(|\eta| = 3\sim 4 \)
 - Quartz radiator + 64 PMTs

- **Central arms** \(|\eta| < 0.35 \)
 - DC, PCs, TOF, EMCAL

- **Reaction Plane Detector** \(|\eta| = 1\sim 2.8 \)
 - 2 rings of 24 scintillators

- **Zero Degree Calorimeter**
 - Spectator neutron energy

Analysis

- Minimum Bias Trigger
- Start time
- Collision z-position
- Centrality
- Event Planes
- Tracking, Momentum
- Particle Identification

Diagram

- Southern detector with a beam line and collision point
- Northern detector with a beam line and collision point
- Reaction plane detector indicated with a red ellipse

Images of detector components shown:
- Central arm setup
- Beam-Beam counter setup
- Reaction plane detector setup

Takafumi Nida, TAC seminar, Dec 20, 2012
Centrality

- Centrality is used to classify events instead of impact parameter.
 - 0% to 100% ↔ central to peripheral collision
- BBC measures charged particles coming from participant.
Event Plane

- Event plane was determined by Reaction Plane Detector
- Resolution: \(\langle \cos (n(\Psi_n - \Psi_{\text{real}})) \rangle \)
 - \(n=2 \): \(\sim 0.75 \)
 - \(n=3 \): \(\sim 0.34 \)
Track Reconstruction

- **Drift Chamber**
 - Momentum determination
 \[p_T \sim \frac{K}{\alpha} \]
 - \(K \): field integral
 - \(\alpha \): incident angle

- **Pad Chamber (PC1)**
 - Associate DC tracks with hit positions on PC1

- **Outer detectors (PC3, TOF, EMCal)**
 - Extend the tracks to outer detectors
Particle IDentification

- **EMC-PbSc is used.**
 - Timing resolution ~ 600 ps

- **Time-Of-Flight method**

 \[m^2 = p^2 \left(\left(\frac{ct}{L} \right)^2 - 1 \right) \]

 - \(p \): momentum
 - \(L \): flight path length
 - \(t \): time of flight

- **Charged \(\pi/K \) within 2\(\sigma \)**
 - \(\pi/K \) separation up to ~1 GeV/c
 - \(K/\rho \) separation up to ~1.6 GeV/c
Correlation Function

- Experimental Correlation Function C_2 is defined as:
 - $R(q)$: Real pairs at the same event.
 - $M(q)$: Mixed pairs selected from two different/similar events.

$$C_2 = \frac{R(q)}{M(q)}$$

$q = p_1 - p_2$

- $R(q)$ includes HBT effects, Coulomb interaction and detector inefficient effect, while $M(q)$ doesn’t include HBT, Coulomb.
3D HBT radii

- “Out-Side-Long” system
 - Bertsch-Pratt parameterization
 - LCMS (Longitudinal Center of Mass System) frame is used.

\[C_2 = 1 + \lambda G \]
\[G = \exp(-R_{inv}^2q_{inv}^2) \]
\[= \exp(-R_{side}^2q_{side}^2 - R_{out}^2q_{out}^2 - R_{long}^2q_{long}^2 - 2R_{os}^2q_{side}q_{out}) \]

- \(\lambda \): chaoticity
- \(R_{side} \): transverse size
- \(R_{out} \): transverse size + emission duration
- \(R_{os} \): cross term between “out” and “side”
- \(R_{long} \): longitudinal size

\(R_{out} \) includes temporal information on emission duration of particles!
Pair Selection

- **Ghost Tracks**
 - A single particle is reconstructed as two tracks

- **Merged Tracks**
 - Two particles is reconstructed as a single track

Distance of pion pairs at DC

Distance of pion pairs at EMC

- Removed
- 1
- 1
Coulomb Interaction

- Coulomb repulsion for like-sign pairs reduces pairs at low-q.
 - Estimated by Coulomb wave function
 \[
 \left[-\frac{\hbar^2 \nabla^2}{2\mu} + \frac{Z_1 Z_2 e^2}{r} \right] \Psi(r) = E \Psi(r) \quad \gamma = \frac{m e^2}{\hbar^2 q} Z_1 Z_2
 \]
- The correction was applied in fit function for \(C_2 \)
 - Core-Halo model
 \[
 C_2 = C_2^{\text{core}} + C_2^{\text{halo}}
 \]
 \[
 = N [\lambda (1 + G) F_{\text{coul}}] + [1 - \lambda]
 \]

\(F_{\text{coul}} \): Coulomb term
\(G \): Gaussian term
Correction of Event Plane Resolution

- Smearing effect by finite resolution of the event plane

- Resolution correction
 - correction for q-distribution

\[
A_{\text{corr}}(q, \Phi_j) = A_{\text{uncorr}}(q, \Phi_j) + 2\sum\zeta_{n,m}[A_c \cos(n\Phi_j) + A_s \sin(n\Phi_j)]
\]

\[
\zeta_{n,m} = \frac{n\Delta/2}{\sin(n\Delta/2)}(\cos(n(\Psi_m - \Psi_{\text{real}})))
\]

Event Plane Resolution

- original
- uncorrected
- corrected

Simulation
Results & Discussion
Azimuthal HBT w.r.t 2nd order event plane

Initial spatial eccentricity

Momentum anisotropy v_2

What is the final eccentricity?

Results & Discussion
Centrality dependence of pion HBT radii w.r.t. Ψ_2

- Oscillation are seen for R_{side}, R_{out}, R_{os}.
- R_{out} has strong oscillation in all centrality.

\begin{itemize}
 \item Oscillation are seen for R_{side}, R_{out}, R_{os}.
 \item R_{out} has strong oscillation in all centrality.
\end{itemize}
Centrality dependence of kaon HBT radii w.r.t Ψ_2

- charged kaons also have similar trends!
Eccentricity at freeze-out

- $\varepsilon_{\text{final}} \approx \varepsilon_{\text{initial}}/2$ for pion
 - This indicates that source expands to in-plane direction, and still elliptical shape.
 - PHENIX and STAR results are consistent.

- $\varepsilon_{\text{final}} \approx \varepsilon_{\text{initial}}$ for kaon
 - Kaon may freeze-out sooner than pion because of less cross section.
 - Due to the difference of m_T between π/K?
m_T dependence of \(\varepsilon_{\text{final}} \)

\[
m_T = \sqrt{k_T^2 + m^2}
\]

- \(\varepsilon_{\text{final}} \) of pions increases with \(m_T \) in most/mid-central collisions
- Still difference between \(\pi/K \) in 20-60% even at the same \(m_T \)
 - Indicates sooner freeze-out time of K than \(\pi \)?
m_T dependence of relative amplitude

- **Relative amplitude of R_{out} in 0-20% doesn’t depend on m_T**
 - Does it indicate the difference of **emission duration** between in-plane and out-of-plane at low m_T?
Azimuthal HBT w.r.t 3rd order event plane

Initial spatial fluctuation

What is final shape?

- Note that no anisotropy is observed by HBT in static source.
Azimuthal HBT radii w.r.t Ψ_3

- R_{side} is almost flat
- R_{out} have a oscillation in most central collisions
Comparison of 2nd and 3rd order component

- In 0-10\%, R_{out} have stronger oscillation for Ψ_2 and Ψ_3 than R_{side}

- This oscillation indicates different emission duration between 0°/60° w.r.t Ψ_3 or depth of the triangular shape?

Average of radii is set to “10” or “5” for w.r.t Ψ_2 and w.r.t Ψ_3

Results & Discussion
Relative amplitude of R_{side}

- Relative amplitude of R_{side} w.r.t Ψ_3 is zero within systematic error.

$$R_s^2 \quad \quad \quad \quad R_{s,0}^2 \quad \quad \quad \quad R_{s,3}^2$$

$\varphi_{\text{pair}} - \Psi_3$

The width of the “homogeneity” seems to be the same between 0°/60° w.r.t Ψ_3 unlike the depth(+emission duration).

$
\varepsilon_{3,\text{final}} = 2 \frac{R_{s,3}^2}{R_{s,0}^2}
$

Results & Discussion
Blast wave model

- **Hydrodynamic model assuming radial flow**
 - Well described at low p_T for spectra & elliptic flow
 - Expand to HBT: **PRC 70, 044907 (2004)**
 - Physical parameters are treated as free parameters.

7 free parameters

- T_f: temperature at freeze-out
- ρ_0, ρ_2: transverse rapidity
- R_x, R_y: transverse sizes (shape)
- $\tau_0, \Delta \tau$: system lifetime and emission duration

\[
\frac{dN}{d\tau} \sim \exp \left(-\frac{(\tau - \tau_0)^2}{2\Delta \tau^2} \right)
\]

Assuming a Gaussian distribution peaked at τ_0 and with a width $\Delta \tau$, and source size doesn’t change with τ.

PRC 70, 044907 (2004)
Fit by Blast wave model

- Spectra and v_2 are used to reduce parameters.

In this model, $\Delta \tau$ doesn’t depend on azimuthal angle.

R_{out} and R_{os} doesn’t seem to be fitted well.

Need to plot the systematic error.

In this model, $\Delta \tau$ doesn’t depend on azimuthal angle.
Extracted freeze-out parameters

- Size(R_x, R_y) and R_y/R_x seem to be valid.
- τ and $\Delta \tau$ increases with going to centrality.
Summary

- **Azimuthal HBT radii w.r.t 2nd-order event plane**
 - Final eccentricity increases with increasing m_T, but not enough to explain the difference between π/K.
 - Difference may indicate faster freeze-out of K^\pm due to less cross section.
 - Relative amplitude of R_{out} in 0-20% doesn’t depend on m_T.
 - It may indicate the difference of emission duration between in-plane and out-of-plane.

- **Azimuthal HBT radii w.r.t 3rd-order event plane**
 - R_{side} doesn’t seem to have azimuthal dependence.
 - While R_{out} clearly has finite oscillation in most central collisions.
 - It may indicate the difference of emission duration between $\Delta\phi=0^\circ/60^\circ$ direction or depth of the triangular shape.

- **Balst wave model**
 - System lifetime and emission duration seems to get longer in central collisions.
Back up
Centrality dependence of v_3 and ε_3

- Weak centrality dependence of v_3
- Initial ε_3 has centrality dependence

Final ε_3 has any centrality dependence?
PHENIX Detectors

RXN in: $1.5 < |\eta| < 2.8$
& out: $1.0 < |\eta| < 1.5$

MPC: $3.1 < |\eta| < 3.7$

BBC: $3.0 < |\eta| < 3.9$

ZDC/SMD

dN/d\eta

Analysis
Image of initial/final source shape
Spatial anisotropy by Blast wave model

- **Blast wave fit for spectra & \(v_n \)**
 - Parameters used in the model
 - \(T_f \): temperature at freeze-out
 - \(\rho_0 \): average velocity
 - \(\rho_n \): anisotropic velocity
 - \(s_n \): spatial anisotropy
 - \(s_2 \) and \(s_3 \) correspond to final eccentricity and triangularity
 - \(s_2 \) increase with going to peripheral collisions
 - \(s_3 \) is almost zero
 - Similar results with HBT

- Initial vs Final spatial anisotropy

Poster, Board #195
Sanshiro Mizuno
Relative amplitude of HBT radii

- Relative amplitude is used to represent “triangularity” at freeze-out
- Relative amplitude of R_{out} increases with increasing N_{part}

\star Triangular component at freeze-out seems to vanish for all centralities (within systematic error)
Charged hadron v_n at PHENIX

- v_2 increases with increasing centrality, but v_3 doesn’t
- v_3 is comparable to v_2 in 0-10%
- v_4 has similar dependence to v_2
\(v_3 \) breaks degeneracy

\[
\begin{align*}
\text{(a) } p_T &= 0.75-1.0 \text{ GeV/c} \\
\text{(b) } p_T &= 1.75-2.0 \text{ GeV/c} \\
\text{(c) } p_T &= 0.75-1.0 \text{ GeV/c} \\
\text{(d) } p_T &= 1.75-2.0 \text{ GeV/c}
\end{align*}
\]

- \(v_3 \) provides new constraint on hydro-model parameters
 - Glauber & \(4\pi \eta/s=1 \) : works better
 - KLN & \(4\pi \eta/s=2 \) : fails
Azimuthal HBT radii for kaons

- Observed oscillation for R_{side}, R_{out}, R_{os}
- Final eccentricity is defined as $\varepsilon_{\text{final}} = 2R_{s,2} / R_{s,0}$
 \[R_{s,n}^2 = \langle R_{s,n}^2 (\Delta \phi) \cos(n\Delta \phi) \rangle \]
 PRC70, 044907 (2004)

\[\lambda_{3D} \]
PHENIX Preliminary

\[R_{\text{os}}^2 \]

Au+Au 200GeV $K^+K^+K^-K^-$
- 0-20%
- 20-60%

@WPCF2011
k_T dependence of azimuthal pion HBT radii in 20-60%

- Oscillation can be seen in R_s, R_o, and R_{os} for each kT regions
k_T dependence of azimuthal pion HBT radii in 0-20%
The past HBT Results for charged pions and kaons

- Centrality / m_T dependence have been measured for pions and kaons
 - No significant difference between both species

![Graphs showing centrality and m_T dependences for charged pions and kaons]
Analysis method for HBT

- **Correlation function**
 \[C_2 = \frac{R(q)}{M(q)} \]
 - Ratio of real and mixed q-distribution of pairs
 - q: relative momentum

- **Correction of event plane resolution**

- **Coulomb correction and Fitting**
 - By Sinyukov’s fit function
 - Including the effect of long lived resonance decay
 \[C_2 = C_2^{\text{core}} + C_2^{\text{halo}} \]
 \[= N[\lambda(1 + G)F] + [1 - \lambda] \]
 \[G = \exp(-R_{\text{side}}^2 q_{\text{side}}^2 - R_{\text{out}}^2 q_{\text{out}}^2 - R_{\text{long}}^2 q_{\text{long}}^2 - 2R_{\text{os}}^2 q_{\text{side}} q_{\text{out}}) \]
Azimuthal HBT radii for pions

- Observed oscillation for R_{side}, R_{out}, R_{os}
- Rout in 0-10% has oscillation
 ✧ Different emission duration between in-plane and out-of-plane?

![Graphs showing oscillations in Rside, Rout, Rlong and λ_3D for PHENIX and PHENIX Preliminary](image)
Model predictions

Blast-wave model

\[T = 100 \text{[MeV]}, \quad \rho = r' \rho_{\text{max}} (1 + \cos(n\phi)) \]

Both models predict weak oscillation will be seen in \(R_{\text{side}} \) and \(R_{\text{out}} \).