

Measurements of azimuthal correlation between jets and charged particles at LHC-ALICE experiment

2013/Jan/08 Pre-Defence Dousatsu Sakata

Outline

Introduction

- Analysis Approach
- Jet Particle Correlation in pp
- Jet Particle Correlation in Pb-Pb
- summary & outlook

Introduction

Quark Gluon Plasma (QGP)

University of Tsukuba

筑波大学

2013/Jan./08

□Quark Gluon Plasma (QGP) ≻T_c~175MeV ≻ε_c~1GeV/fm³

Signatures of QGP at RHIC

- Suppression high p_T particle production
- ➤Large anisotropic expansion
- Modification heavy meson properties

Jet

2013/Jan./08

Jet Modification

2013/Jan./08

Indirect Measurements at RHIC

Jet was not reconstructed

Nuclear modification factor

$$R_{AA}^{h}(p_T, b) \equiv \frac{\frac{dN^{AA \to h+X}}{d^2 p_T}}{N_{bin}(b)\frac{dN^{pp \to h+X}}{d^2 p_T}}$$

2013/Jan./08

Direct Measurement at LHC

However....

 \diamond azimuthal information is minimized

 \diamond we could not see the modification in jet bases

2013/Jan./08

Motivation & Cogitations

due to collision energy

information in current studies

comprehensive measurements are needed! Jet and Charged Particle Azimuthal Correlation To draw out jet modification effect directly!!!

My Contribution

Analysis

Large Hadron Collider (LHC)

CERN Accelerator Complex

2009 : pp 900GeV 2010 : **pp 7TeV Pb-Pb 2.76TeV** 2011 : **pp 2.76TeV**,7TeV Pb-Pb 2.76TeV 2012 : pp 7TeV,8TeV p-Pb 2.76TeV

Properties Ring Property R=9km, L=27km Top Energy pp : 14TeV Pb-Pb : 5.5TeV/nucleon

2013/Jan./08

A Large Ion Collider Experiment (ALICE)

- **ZDC** (η=±8)
 - Trigger(offline)

VZERO

- Trigger
- Centrality
- Event Plane
- □ ITS+TPC (-0.9<η<0.9)
 - Trigger (ITS inner only)
 - Global Tracking

MB: SPD||(V0A||V0C)~93% efficiency $|V_z|$ <10cm (offline) ZDC timing (offline for Pb-Pb)

2013/Jan./08

Charged Track Reconstruction

Global Tracking (ITS+TPC) with SPD & ITS refit

- without SPD & ITS refit
- without SPD

(due to SPD problem)

@ $p_T \sim 40 \text{GeV/c}$ $\sigma p_T / p_T < 10\%$ Efficiency ~ 80% PbPb ~ 85% pp

2013/Jan./08

Jet Reconstruction (FASTJET)

FastJet: sequential clustering algorithms http://www.lpthe.jussieu.fr/~salam/fastjet/

University of Tsukuba

筑波大学

2013/Jan./08

Di-Jet Event Selection

almost leading jets are reconstructed as leading jets.

2013/Jan./08

Backgrounds in Charged Jet

2013/Jan./08

Backgrounds in Pb-Pb

Soft Particle quark, gluon pair production in color field

- ➢ quark recombination
- Expansion(radial, elliptic..)

Hard Particle

- ≻ fake jet
- ➤ combinatorial jet
- Event Characterization
 - ➤ centrality
 - ➢event plane

2013/Jan./08

Centrality

Event Plane

2013/Jan./08

筑波大学

Jet Momentum w.r.t EP

Reconstructed jet's momentum is strongly biased on centrality and event plane.

We have to correct jet momentum

2013/Jan./08

Back Ground Subtraction

$$\frac{dp_T^{total}}{d\phi d\eta} \quad \longleftarrow \quad f = A + B\cos(2(\phi - \psi_2)) + C\cos(3(\phi - \psi_3))$$

$$p_T^{BKG} = Area \times \frac{dp_T^{total}}{d\phi d\eta}$$

- **\Box** Fill particle with their p_T into hist.
- Fit function to 2D histogram
- ϕ **D** Subtract BKG from Jet p_T
 - Calc. $< p_T^{BKG} > at \phi (dR(jet-bin) > 0.5)$
 - **Correct bin value** $p_T^{bin} \langle p_T^{BKG} \rangle$
 - Fit function again
 - Subtract BKG from jet again

2013/Jan./08

Subtracted Jet Momentum

 We got uniform momentum distribution w.r.t EP after BKG subtraction.
 Still have slightly EP dependence in

mid-central, peripheral due to pass length dependence

of Jet modification.

2013/Jan./08

Jet Particle Azimuthal Correlation

2013/Jan./08

Results & Discussion

Momentum weighted Azimuthal Distribution w.r.t Jet Axis

Peak width and height depend on trigger jet momentum.
 Underlying momentum depend on center mass energy.

2013/Jan./08

Pb-Pb BKD sub 前

2013/Jan./08

Jet Particle Correlation in Pb-Pb

Pb-Pb 2.76TeV BKG is subtracted for Jet and associate distribution.

2013/Jan./08

PYTHIA di-jet embedded Events

DATA : MB event @ 2.76 TeV PYTHIA : Di-Jet event @ 2.76 TeV

2013/Jan./08

Comparing DATA with PYTHIA

■ PYTIA Jet has good agreement with Jet on Data ■ Y^{DATA}/Y^{MC} ~ 1.1 in near/away side

2013/Jan./08

Di-jet Event Matching

2013/Jan./08

2013/Jan./08

Momentum Modification

2013/Jan./08

Pre-Defence

34

Momentum Modification

Near Side

- \succ high p_T particle is suppressed, low p_T particles enhanced
- modification is saturated? -> jet E scale effects due to jet modification?

Away Side

- \succ high p_T particle is suppressed, low p_T particles enhanced
- > But difference of high p_T and low p_T decrease with centrality? -> jet E scale?

36

Trigger Momentum Dependence

Suppression & enhancement stronger with trigger jet momentum.

Summary

- First Pb-Pb runs are analyzed for jet measurement.
- BKG subtraction technics are established.
- □ Jet Particle Correlation is also established.
- □We see flow effects in jet modification.
- We could draw out jet modification effects in JPC
 - \geq high p_T particles suppression with azimuthal info.
 - \succ re-distribute to low p_T with large angel (cf CMS)
 - ➢ jet modification looks balanced
 - ➢ jet modification quantity larger with jet momentum

What's new?

ALICE get consistent results with CMS

- We measure detail of jet modification in leading jets and sub-leading jets individually.
- □ The measurement is a mile-stone of jet measurements of ALICE.
 - >We can draw out more detail of modification with PID
 - \Rightarrow proton ID ~ 5GeV/c with 3 σ
 - \diamond proton/pion production ratio

Outlook

Systematic uncertainty for embedded PYTHIA

- ➢ Track Efficiency
- Track Momentum Res. : 3% worth PbPb/pp
- Contamination

: 5% worth PbPb/pp

- : ±1% PbPb/pp
- >Jet Momentum Scale
- : ±5% Data <->PYTHIA
- Event Plane Calibration
- Quantification of Jet-Particle Correlation

Backup

Jet Asymmetry Dependence

2013/Jan./08

Pre-Defence

F

Multiplicity in Leading Jet

2013/Jan./08

Energy Flow

2013/Jan./08

Jet Particle Azimuthal Correlation

2013/Jan./08

University of Tsukuba

筑波大学

Momentum distribution of associate particles w.r.t Jet axis.

- > Leading jet properties (p_T and $\sigma p_T/d\phi$)
- Sub-leading jet properties
- Underlying momentum
- > fragmentation function

Topics

- > рр
 - ♦ Trigger momentum dependence
 - ♦ Center mass energy dependence
- Pb-Pb
 - \diamond Centrality dependence
 - \diamond Jet modification