

Measurements of azimuthal correlation between jet and charged particle at LHC-ALICE experiment

2012/Dec/19 TAC seminar Dousatsu Sakata

Outline

Introduction

- Analysis Approach
- Jet Particle Correlation in pp
- Jet Particle Correlation in Pb-Pb
- summary & outlook

Introduction

Quark Gluon Plasma (QGP)

University of Tsukuba

筑波大学

2012/Dec./19

Quark Gluon Plasma (QGP)
 T_c~175MeV
 ε_c~1GeV/fm³

Signatures of QGP at RHIC

- Suppression high p_T particle production
- ➤Large anisotropic expansion
- Modification heavy meson properties

Jet

Jet Modification

Direct Measurement of Jet Modification

≻However....

 \diamond azimuthal information is minimized

 \diamond we could not see the modification in jet bases

Huge Background in Pb-Pb

Soft Particle production

- > quark, gluon pair production in color field
- ➢ quark recombination
- Decay
- Conversion
- Expansion(radial, elliptic..)
- Event Characterization
 - ➤ centrality
 - ➢event plane

2012/Dec./19

Motivation & Cogitations

Two Particle Correlation

RHIC

 difficult to reconstruct jets due to collision energy

Momentum Asymmetry in Di-Jet

minimized azimuthal information in current studies

comprehensive measurements are needed! Jet and Charged Particle Azimuthal Correlation To draw out jet modification effect directly!!!

2012/Dec./19

My Contribution

TAC seminar

2012/Dec./19

筑波大学

10

Analysis

Large Hadron Collider (LHC)

CERN Accelerator Complex

2009 : pp 900GeV 2010 : **pp 7TeV Pb-Pb 2.76TeV** 2011 : **pp 2.76TeV**,7TeV Pb-Pb 2.76TeV 2012 : pp 7TeV,8TeV p-Pb 2.76TeV

□ Properties ➢ Ring Property ◇ R=9km,2πR²=27km ➢ Top Energy

♦ Pb-Pb : 5.5TeV/nucleon

2012/Dec./19

A Large Ion Collider Experiment (ALICE)

- **ZDC** (η=±8)
 - Trigger(offline)

VZERO

- Trigger
- Centrality
- Event Plane
- □ ITS+TPC (-0.9<η<0.9)
 - Trigger (ITS inner only)
 - Global Tracking

MB: SPD||(V0A||V0C)~93% efficiency $|V_z|$ <10cm (offline) ZDC timing (offline for Pb-Pb)

2012/Dec./19

Track Reconstruction

□Global Tracking (ITS+TPC) > with SPD & ITS refit > without SPD & ITS refit (due to SPD problem) □ Global Tracking (ITS+TPC) (mathematical data of the second structure of the second structure

2012/Dec./19

Jet Reconstruction (FASTJET)

FastJet: sequential clustering algorithms http://www.lpthe.jussieu.fr/~salam/fastjet/

2012/Dec./19

University of Tsukuba

筑波大学

Di-Jet Event Selection

almost leading jets are reconstructed as leading jets.

2012/Dec./19

Centrality

Event Plane

TAC seminar

2012/Dec./19

筑波大学

Jet Momentum Enhancement w.r.t EP

Reconstructed jet's momentum is strongly biased on centrality and event plane.

We have to correct jet momentum

2012/Dec./19

Back Ground Subtraction

$$\frac{dp_T^{total}}{d\phi d\eta}$$

$$f = A + B\cos(2(\phi - \psi_2)) + C\cos(3(\phi - \psi_3))$$

$$p_T^{BKG} = Area \times \frac{dp_T^{total}}{d\phi d\eta}$$

 \Box Fill particle with their p_T

[♦] □ Fit function to 2D histogram

□Subtract BKG from Jet p_T

 $\Box Calc. < p_T^{BKG} > at \phi (dR(jet-bin) > 0.5)$

Correct bin value $p_T^{bin} - \langle p_T^{BKG} \rangle$

♦ □ Fit & subtract again

2012/Dec./19

Subtracted Jet Momentum

We got uniform momentum distribution w.r.t EP after BKG subtraction.
Still have slightly EP dependence in

mid-central, peripheral due to pass length dependence

of Jet modification.

2012/Dec./19

Jet Particle Azimuthal Correlation

University of Tsukuba

筑波大学

Momentum distribution of associate particles w.r.t Jet axis.

- > Leading jet properties (p_T and $\sigma p_T/d\phi$)
- Sub-leading jet properties
- Underlying momentum
- fragmentation function

Topics

- ≻ pp
 - ♦ Trigger momentum dependence
 - ♦ Center mass energy dependence
- Pb-Pb
 - ♦ Centrality dependence
 - \diamond Jet modification

Results & Discussion

Momentum Distribution w.r.t Jet Axis

Peak width and height depend on trigger jet momentum.
 Underlying momentum depend on center mass energy.

Comparison with MC events

PYTIA Jet has good agreement with Jet on Data

2012/Dec./19

Jet Particle Correlation in Pb-Pb

We would like to minimize BKG flow effects!!! ➢ jet momentum scale

associate distribution modification

2012/Dec./19

BKG Flow Effect in J-P Correlation

Momentum Modification

2012/Dec./19

Momentum Modification

Near Side

- \succ high p_T particle is suppressed, low p_T particles enhanced
- modification is saturated? -> jet E scale effects due to jet modification?

Away Side

- \succ high p_T particle is suppressed, low p_T particles enhanced
- > But difference of high p_T and low p_T decrease with centrality? -> jet E scale?

30

Trigger Momentum Dependence

Suppression & enhancement stronger with trigger jet momentum.

Summary & Outlook

- First Pb-Pb runs are analyzed for jet measurement.
- BKG subtraction technics are established.
- □ Jet Particle Correlation is also established.
- □We see flow effects in jet modification.
- We could draw out jet modification effects in JPC
 - \geq high p_T particles suppression with azimuthal info.
 - \geq low p_T particles enhancement with azimuthal info.
 - \succ re-distribute of low p_T to large angel (cf CMS)
 - jet modification looks balanced
 - > jet modification quantity larger with jet momentum

$outlook \mathcal{O}outlook$

A_j依存性、ジェット内粒子多重度によるクラス分け QPYTHIAなどのJet modificationを考慮したモデルのチューニング

□PYTHIAジェットとQPYTHIAジェットの区別

≻cf)quark jet, gluon jet セパレーション

2012/Dec./19

Backup

Jet Asymmetry Dependence

2012/Dec./19

TAC seminar

F

Multiplicity in Leading Jet

2012/Dec./19

Energy Flow

