Experimental status of heavy-ion collisions at LHC

Tatsuya Chujo ATHIC 2014

Outline

- I. Collectivity in p-Pb vs. PbPb
- 2. Energy loss (jet, γ-jet, heavy quarks)
- 3. Melting temperature, quark recombination via quarkonia production
- 4. Summary

*Note: This talk is not intend to a complete review of LHC HI results, but rather to show selected recent results (from QMI4 w/ personal bias), try to summarize the current understanding of LHC HIC.

I. Collectivity(pPb and PbPb)

Highest pPb multiplicity ~ 55-60% Pb-Pb.

PID pt spectra in p-Pb

- ALICE preliminary results of p_T spectra in p-Pb collisions at √s_{NN} = 5.02 TeV.
- Shown here are for π , K, p, K⁰, Λ , Ξ , Ω
- Fitted by the blast wave model (global fit).

T_{kin} vs. $<\beta_T>$ in blast wave

- Coherent fit for π , K, p, K⁰, Λ , Ξ , Ω for different centrality (pp, pPb, PbPb)
- At same N_{ch} , $<\beta_T>$ larger in p-Pb than in that in Pb-Pb, but also, $<\beta_T>$ similarly large in pp and p-Pb (at same N_{ch}) with large T.
- Strong correlation between T and $<\beta_T>$.

HBT correlation in p-Pb

Similar large radii (R_{long} up to 5 fm) in pPb & PbPb at the same N_{ch} . Scaling with multiplicity and k_T (dynamical behavior).

Di-Hadron Correlations in p-p & p-Pb

- First observation of ridge structure in high multiplicity p-p (CMS).
- Also confirmed in p-Pb high multiplicity events.
- Alway side ridge structure is observed in high multiplicity p-Pb.

CMS, JHEP 1009 (2010) 91 CMS, PLB 718 (2012) 795 ATLAS, PRL 110, 182302 (2013)

Double ridge structure in p-Pb

- Extract double ridge structure by subtracting p-p jet like distribution in p-Pb (60-100%) from central p-Pb (0-20%).
- Confirmed that near and away side ridges are almost same structure, a la "Double ridge".
- Strong correlation between near and away side yields, suggesting the same origin.

Multi-particle correlations (PbPb vs.pPb)

- Observed non-flow effect in v₂{2}.
- v₂ stays large when calculated with multi-particles.
- $v_2{4}=v_2{6}=v_2{8}=v_2{LYZ}$ within 10%
- Suggest collectivity in p-Pb.

v₂, v₃, v₄ comparisons; p-Pb vs. Pb-Pb

before scaling

after scaling

- 1. Adjust p+Pb p_T scale by 4/5 to account for difference in p_T (Teany et al.) for ATLAS data.
- Pb+Pb v₂ and v₄ multiplied by
 0.66 to match p+Pb
- Compare p+Pb and Pb+Pb
 - Good agreement between p-Pb and Pb-Pb when including p_T and v₂, v₄ rescaling

PID v₂ in p-Pb

PLB719 (2013) 29 PLB726 (2013) 164

- v_2 for π , K, p (ALICE) and K_s^0 , Λ (CMS)
- Very similar behaviour for v2 in Pb-Pb, i.e, Mass ordering & crossing

Quark number scaling test in pPb

Quark number scaling of v₂.

- Comparison in p-Pb and Pb-Pb in same N_{ch}.
- Seems better in pPb.

 $185 \le N_{trk}^{offline} < 220$

(0.006-0.06%)

p_{_} (GeV)

v₃ in Pb-Pb vs. p-Pb

Remarkable similarity in v₃ as a function of multiplicity in p-Pb and Pb-Pb

Now on PbPb; towards precession measurements of identified particle v₂

PID v₂ in Pb-Pb

arXiv:1405.4632

- ALICE data of v₂ measured for π , K, K⁰, p, ϕ , Λ , Ξ , Ω
- Mass ordering ($p_T < 2.5$ GeV/c).

PID v₂ in Pb-Pb

arXiv:1405.4632

Number of quark constituent scaling violated by ~20% in particular in central collisions
 (p_T/n_q > 1 GeV/c)

Closer look at ϕ meson v_2 (Pb-Pb)

- v_2 at low p_T follows mass ordering
- v₂ at high p_T close to p in central, and close to π in mid-central
- In central collisions p and φ p_T spectra have similar shape up to ~4 GeV/c, as expected from radial flow.
- Indicated that mass (and not number of constituent quarks) is main driver of v₂ and spectra in central only?

2. Energy loss

Di-jet energy imbalance

0.5

I) Large energy imbalance is observed in central Pb-Pb.

$$A_{J} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

p_{T,1}: leading jet p_{T,2}: sub-leading jet

2) Large A_j : low momentum particle (< 4 GeV/c) emitted at large angle on away side.

 A_{J}

0.5

0.2

0.6

0.4

0.8

 A_J

Y-jet: jet tomography

CMS, Phys. Lett. B 718 (2013) 773
$$| < x_{J\gamma}> = p_T^{jet}/p_T^{\gamma}$$

 R_{JY} : fraction of photons with jet partner

- γ as a calibrated probe of jet energy.
- significant change in R_{JY} , $\langle x_{JY} \rangle$ compared to PYTHIA and pp.

Y-jet in pPb, PbPb

- R_{Jγ} = fraction of photons with a jet of p_{T, jet} > 30 GeV
- Jet energy is essentially unmodified in pPb.

Jet spectra in Pb-Pb, p-p

Pb-Pb 2.76 TeV

• ATLAS: in different y and centrality, up to $p_T < 400 \text{ GeV}$

Jet RAA: centrality and y dep.

- Jet R_{AA} vs p_T and y.
- Factor of ~2 suppression up to jet p_T of 400 GeV
- Slow increase with increasing jet p_T, may vary with centrality

Jet RAA: centrality and y dep.

Centrality dep.

- R_{AA} monotonically decreases of vs N_{part}
 - $R_{AA} \sim 0.8$ in 60-80%,
 - R_{AA} ~0.4 in 0-1% at lower jet p
- No significant dependence on rapidity observed
 - Even though both spectrum shape and q/g fractions vary with y

Jet Fragmentation in PbPb

- Ratios of D(z) vs centrality, using baseline peripheral (60-80%) peripheral
- In addition to features previously seen (modification of small z (low pT)),
 indication of an enhancement at large z

Jet Fragmentation in PbPb

 Enhancement at large z (or p⊤)clearer for smaller jet radii (R = 0.2, 0.3).

D meson R_{AA} and v₂

arXiv:1405.2001

- D mesons are also strongly suppressed.
- significant non-zero v2 for D.

Charm vs. Bottom

- R_{AA} for charmed meson (D) vs.
 bottom meson (J/ψ from B decay).
- First indication
 of a flavor
 dependence of
 R_{AA}.
- $\bullet \quad \mathbf{R}_{\mathbf{A}\mathbf{A}}^{\mathbf{B}} > \mathbf{R}_{\mathbf{A}\mathbf{A}}^{\mathbf{D}}$

Now on pPb; Jet/heavy q in pPb

R_{AA} for h[±] and jet in p-Pb

Unmodified for charged hadron and jet in pPb.

RpA & RAA for jets and b jets

- Jets coming from b (second vertex)
- As suppressed as incl. jets (R_{AA} ≈ 0.5)
- Not suppressed in pPb (R_{pA} ≈ 1)

Jet in pPb, RAA, y dep.

Inclusive jet in pPb, no y dependence seen

Jet RCP for pPb (centrality and y dep.)

 ATLAS observes a strong variation in jet yield with centrality at high p_T or forward rapidities.

† 0-10%/60-90%
 † 20-30%/60-90%
 † 40-60%/60-90%

£51.4 +3.6 < V* < +4.4 $+2.8 < y^* < +3.6$ ATLAS $+2.1 < v^* < +2.8$ $+0.3 < v^* < +0.8$ $1.4 -0.3 < y^* < +0.3$ $-0.8 < y^* < -0.3$ -2.1 < y* < -1.2

Jet R_{PPb} (centrality dep.)

- If inclusive $R_{pPb} \sim 1$ and R_{CP} shows such effects, necessarily;
 - Peripheral enhancement
 - Central suppression

Some explanations:

- Geometrical effect (proton special configuration, protons with larger x partons have a reduced soft cross section)
- It is still unclear for this effect...

B meson in p-Pb

- $B^+ \rightarrow J/\psi K^+, B_0 \rightarrow J/\psi K^*, B_s \rightarrow J/\psi \phi$
- Showing no modification (large uncertainty, incl. the FONLL ref)

T. Ch

RpPb for heavy quark

 Showing no modification for D, b(\rightarrow c) \rightarrow e, c,b \rightarrow μ

3. Melting temperature for quarkonia, and recombination

Dissociation temperature

Melting excited Y states

- Suppression of ground state Y(1s), and excited states Y(2S) and Y(3S).
- Consistent with the sequential melting scenario, Y(3S) > Y (2S) > Y (1S).

Y in pPb

- Excited states in pPb: less suppressed than in PbPb
- Excited/ground state ratio appears to vary w.r.t. the pPb and pp event multiplicity (at mid-rapidity)

J/ψ (color screening vs. regeneration)

mid-rapidity R_{AA} for J/Ψ

- J/ψ measured at mid-rapidity |y|
 0.9, by e⁺e⁻ at LHC.
- Compared to RHIC midrapidity data.
- Significant larger R_{AA} than those at RHIC.

J/ψ (color screening vs. regeneration)

forward-rapidity R_{AA} for J/ψ

- J/ ψ measured at forward-rapidity 2.5 < y < 4, by $\mu^+\mu^-$ at LHC.
- Compared to RHIC forward data.
- Significant larger
 R_{AA} than those at RHIC.
- Suppression is stronger than that at mid-rap.

J/ψ (color screening vs. regeneration)

Inclusive J/ ψ , 2.5<y<4 Pb-Pb $\sqrt{s_{NN}}$ =2.76 TeV, L≈ 70 μb⁻¹ X. Zhao et al, NPA 859(2011) 114 global sys.= ±6% --- primordial 0<p_<2 GeV/c 8.0 0.6 0.4 0.2

200

300

350

'part/

High p_T: R_{AA} at forward y, $J/\psi \rightarrow \mu^+\mu^-$

150

- J/ψ R_{AA} is enhanced at low p_T.
- Compatible with models including regeneration.

50

-PREL-36125

100

J/ψ V₂

ALICE: arXiv:1303.5880

- J/ ψ produced via regeneration of thermal de-confined c-quarks should show a non zero v_2 .
- Data: Hint of non-zero v₂.
- Consistent with the transport model with regeneration.

p-Pb

Summary

- High multi. events: collectivity, similar to those in Pb-Pb, but not same.
- Inclusive hard probes (jet, γ-jet, heavy q) do not show modification.
- Indication of centrality dep. of jet yields in high p_T (ATLAS).

Pb-Pb

- ϕ : mass effect dominant in central only?
- Stronger suppression for D than that for B.
- J/psi: importance of regeneration of cc-bar, non-zero v_2 .

44

Questions to be answered in Run-1/2

My personal view!

- I. What is the driving force of collectivity in p-Pb and p-p high multiplicity events?
 - Multi-parton int. is the only cause?
 - Role of CGC?
- 2. Medium response to jet.
 - Measurements of hard + soft interaction, i.e. soft observables w/ jet axis.
- 3. Jet tomography.
 - di-jet, γ -jet, $h(\pi^0)$ -jet, correlations etc. w.r.t. reaction plane.

Thank you for your attentions!

