Experimental status of heavy-ion collisions at LHC Tatsuya Chujo ATHIC 2014 #### Outline - I. Collectivity in p-Pb vs. PbPb - 2. Energy loss (jet, γ-jet, heavy quarks) - 3. Melting temperature, quark recombination via quarkonia production - 4. Summary *Note: This talk is not intend to a complete review of LHC HI results, but rather to show selected recent results (from QMI4 w/ personal bias), try to summarize the current understanding of LHC HIC. ## I. Collectivity(pPb and PbPb) Highest pPb multiplicity ~ 55-60% Pb-Pb. ## PID pt spectra in p-Pb - ALICE preliminary results of p_T spectra in p-Pb collisions at √s_{NN} = 5.02 TeV. - Shown here are for π , K, p, K⁰, Λ , Ξ , Ω - Fitted by the blast wave model (global fit). ## T_{kin} vs. $<\beta_T>$ in blast wave - Coherent fit for π , K, p, K⁰, Λ , Ξ , Ω for different centrality (pp, pPb, PbPb) - At same N_{ch} , $<\beta_T>$ larger in p-Pb than in that in Pb-Pb, but also, $<\beta_T>$ similarly large in pp and p-Pb (at same N_{ch}) with large T. - Strong correlation between T and $<\beta_T>$. ## HBT correlation in p-Pb Similar large radii (R_{long} up to 5 fm) in pPb & PbPb at the same N_{ch} . Scaling with multiplicity and k_T (dynamical behavior). #### Di-Hadron Correlations in p-p & p-Pb - First observation of ridge structure in high multiplicity p-p (CMS). - Also confirmed in p-Pb high multiplicity events. - Alway side ridge structure is observed in high multiplicity p-Pb. CMS, JHEP 1009 (2010) 91 CMS, PLB 718 (2012) 795 ATLAS, PRL 110, 182302 (2013) #### Double ridge structure in p-Pb - Extract double ridge structure by subtracting p-p jet like distribution in p-Pb (60-100%) from central p-Pb (0-20%). - Confirmed that near and away side ridges are almost same structure, a la "Double ridge". - Strong correlation between near and away side yields, suggesting the same origin. #### Multi-particle correlations (PbPb vs.pPb) - Observed non-flow effect in v₂{2}. - v₂ stays large when calculated with multi-particles. - $v_2{4}=v_2{6}=v_2{8}=v_2{LYZ}$ within 10% - Suggest collectivity in p-Pb. #### v₂, v₃, v₄ comparisons; p-Pb vs. Pb-Pb #### before scaling #### after scaling - 1. Adjust p+Pb p_T scale by 4/5 to account for difference in p_T (Teany et al.) for ATLAS data. - Pb+Pb v₂ and v₄ multiplied by 0.66 to match p+Pb - Compare p+Pb and Pb+Pb - Good agreement between p-Pb and Pb-Pb when including p_T and v₂, v₄ rescaling ## PID v₂ in p-Pb PLB719 (2013) 29 PLB726 (2013) 164 - v_2 for π , K, p (ALICE) and K_s^0 , Λ (CMS) - Very similar behaviour for v2 in Pb-Pb, i.e, Mass ordering & crossing #### Quark number scaling test in pPb #### **Quark number** scaling of v₂. - Comparison in p-Pb and Pb-Pb in same N_{ch}. - Seems better in pPb. $185 \le N_{trk}^{offline} < 220$ (0.006-0.06%) p_{_} (GeV) ## v₃ in Pb-Pb vs. p-Pb Remarkable similarity in v₃ as a function of multiplicity in p-Pb and Pb-Pb ## Now on PbPb; towards precession measurements of identified particle v₂ ## PID v₂ in Pb-Pb arXiv:1405.4632 - ALICE data of v₂ measured for π , K, K⁰, p, ϕ , Λ , Ξ , Ω - Mass ordering ($p_T < 2.5$ GeV/c). ### PID v₂ in Pb-Pb arXiv:1405.4632 Number of quark constituent scaling violated by ~20% in particular in central collisions (p_T/n_q > 1 GeV/c) #### Closer look at ϕ meson v_2 (Pb-Pb) - v_2 at low p_T follows mass ordering - v₂ at high p_T close to p in central, and close to π in mid-central - In central collisions p and φ p_T spectra have similar shape up to ~4 GeV/c, as expected from radial flow. - Indicated that mass (and not number of constituent quarks) is main driver of v₂ and spectra in central only? ## 2. Energy loss ## Di-jet energy imbalance 0.5 I) Large energy imbalance is observed in central Pb-Pb. $$A_{J} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$ p_{T,1}: leading jet p_{T,2}: sub-leading jet 2) Large A_j : low momentum particle (< 4 GeV/c) emitted at large angle on away side. A_{J} 0.5 0.2 0.6 0.4 0.8 A_J ## Y-jet: jet tomography CMS, Phys. Lett. B 718 (2013) 773 $$| < x_{J\gamma}> = p_T^{jet}/p_T^{\gamma}$$ R_{JY} : fraction of photons with jet partner - γ as a calibrated probe of jet energy. - significant change in R_{JY} , $\langle x_{JY} \rangle$ compared to PYTHIA and pp. ## Y-jet in pPb, PbPb - R_{Jγ} = fraction of photons with a jet of p_{T, jet} > 30 GeV - Jet energy is essentially unmodified in pPb. ## Jet spectra in Pb-Pb, p-p #### **Pb-Pb 2.76 TeV** • ATLAS: in different y and centrality, up to $p_T < 400 \text{ GeV}$ ## Jet RAA: centrality and y dep. - Jet R_{AA} vs p_T and y. - Factor of ~2 suppression up to jet p_T of 400 GeV - Slow increase with increasing jet p_T, may vary with centrality ## Jet RAA: centrality and y dep. #### Centrality dep. - R_{AA} monotonically decreases of vs N_{part} - $R_{AA} \sim 0.8$ in 60-80%, - R_{AA} ~0.4 in 0-1% at lower jet p - No significant dependence on rapidity observed - Even though both spectrum shape and q/g fractions vary with y ## Jet Fragmentation in PbPb - Ratios of D(z) vs centrality, using baseline peripheral (60-80%) peripheral - In addition to features previously seen (modification of small z (low pT)), indication of an enhancement at large z ## Jet Fragmentation in PbPb Enhancement at large z (or p⊤)clearer for smaller jet radii (R = 0.2, 0.3). ## D meson R_{AA} and v₂ arXiv:1405.2001 - D mesons are also strongly suppressed. - significant non-zero v2 for D. #### Charm vs. Bottom - R_{AA} for charmed meson (D) vs. bottom meson (J/ψ from B decay). - First indication of a flavor dependence of R_{AA}. - $\bullet \quad \mathbf{R}_{\mathbf{A}\mathbf{A}}^{\mathbf{B}} > \mathbf{R}_{\mathbf{A}\mathbf{A}}^{\mathbf{D}}$ ## Now on pPb; Jet/heavy q in pPb ## R_{AA} for h[±] and jet in p-Pb Unmodified for charged hadron and jet in pPb. #### RpA & RAA for jets and b jets - Jets coming from b (second vertex) - As suppressed as incl. jets (R_{AA} ≈ 0.5) - Not suppressed in pPb (R_{pA} ≈ 1) ## Jet in pPb, RAA, y dep. Inclusive jet in pPb, no y dependence seen #### Jet RCP for pPb (centrality and y dep.) ATLAS observes a strong variation in jet yield with centrality at high p_T or forward rapidities. † 0-10%/60-90% † 20-30%/60-90% † 40-60%/60-90% £51.4 +3.6 < V* < +4.4 $+2.8 < y^* < +3.6$ ATLAS $+2.1 < v^* < +2.8$ $+0.3 < v^* < +0.8$ $1.4 -0.3 < y^* < +0.3$ $-0.8 < y^* < -0.3$ -2.1 < y* < -1.2 ## Jet R_{PPb} (centrality dep.) - If inclusive $R_{pPb} \sim 1$ and R_{CP} shows such effects, necessarily; - Peripheral enhancement - Central suppression #### Some explanations: - Geometrical effect (proton special configuration, protons with larger x partons have a reduced soft cross section) - It is still unclear for this effect... ## B meson in p-Pb - $B^+ \rightarrow J/\psi K^+, B_0 \rightarrow J/\psi K^*, B_s \rightarrow J/\psi \phi$ - Showing no modification (large uncertainty, incl. the FONLL ref) T. Ch ## RpPb for heavy quark Showing no modification for D, b(\rightarrow c) \rightarrow e, c,b \rightarrow μ # 3. Melting temperature for quarkonia, and recombination ## Dissociation temperature #### **Melting excited** Y states - Suppression of ground state Y(1s), and excited states Y(2S) and Y(3S). - Consistent with the sequential melting scenario, Y(3S) > Y (2S) > Y (1S). ## Y in pPb - Excited states in pPb: less suppressed than in PbPb - Excited/ground state ratio appears to vary w.r.t. the pPb and pp event multiplicity (at mid-rapidity) #### J/ψ (color screening vs. regeneration) #### mid-rapidity R_{AA} for J/Ψ - J/ψ measured at mid-rapidity |y| 0.9, by e⁺e⁻ at LHC. - Compared to RHIC midrapidity data. - Significant larger R_{AA} than those at RHIC. #### J/ψ (color screening vs. regeneration) #### forward-rapidity R_{AA} for J/ψ - J/ ψ measured at forward-rapidity 2.5 < y < 4, by $\mu^+\mu^-$ at LHC. - Compared to RHIC forward data. - Significant larger R_{AA} than those at RHIC. - Suppression is stronger than that at mid-rap. #### J/ψ (color screening vs. regeneration) #### Inclusive J/ ψ , 2.5<y<4 Pb-Pb $\sqrt{s_{NN}}$ =2.76 TeV, L≈ 70 μb⁻¹ X. Zhao et al, NPA 859(2011) 114 global sys.= ±6% --- primordial 0<p_<2 GeV/c 8.0 0.6 0.4 0.2 200 300 350 'part/ #### High p_T: R_{AA} at forward y, $J/\psi \rightarrow \mu^+\mu^-$ 150 - J/ψ R_{AA} is enhanced at low p_T. - Compatible with models including regeneration. 50 -PREL-36125 100 ### J/ψ V₂ ALICE: arXiv:1303.5880 - J/ ψ produced via regeneration of thermal de-confined c-quarks should show a non zero v_2 . - Data: Hint of non-zero v₂. - Consistent with the transport model with regeneration. #### p-Pb ## Summary - High multi. events: collectivity, similar to those in Pb-Pb, but not same. - Inclusive hard probes (jet, γ-jet, heavy q) do not show modification. - Indication of centrality dep. of jet yields in high p_T (ATLAS). #### Pb-Pb - ϕ : mass effect dominant in central only? - Stronger suppression for D than that for B. - J/psi: importance of regeneration of cc-bar, non-zero v_2 . 44 #### Questions to be answered in Run-1/2 My personal view! - I. What is the driving force of collectivity in p-Pb and p-p high multiplicity events? - Multi-parton int. is the only cause? - Role of CGC? - 2. Medium response to jet. - Measurements of hard + soft interaction, i.e. soft observables w/ jet axis. - 3. Jet tomography. - di-jet, γ -jet, $h(\pi^0)$ -jet, correlations etc. w.r.t. reaction plane. ## Thank you for your attentions!