Event shape dependence of jet correlations at RHIC

Takahito Todoroki
University of Tsukuba
2014/July/19

Heavy Ion Café @ University of Tokyo
Jet-Quenching

Au+Au

Hard-scattered parton

Jet

Re-distribution of Deposited energy

Collective expansion

Parton energy loss

Jet

Hard-scattered parton

Suppression of away-side

 Pedestal Subtracted

PRL91.072304 (2003)

\[
\Delta \phi = \phi^a - \phi^t \quad \text{[rad]}
\]

\[
\frac{1}{N_{\text{trigger}}} \frac{dN}{d\Delta \phi}
\]

\[4<p_T^{\text{trig}}<6, \ 2<p_T^{\text{asso}}<p_T^{\text{trig}}\]
Ψ_2 Dependence of Suppression in High p_T correlations

![Graph showing $h^+ p_T^a = 5$-7 GeV/c and $\pi^0 p_T^l = 4$-7 GeV/c]

- Figure 6. (Color online) Per-trigger azimuthal jet yields for the most central events. The near-side suppression is consistent through the collision zone. The same set of representative particle orientations are indicated with arrows.

- Figure 7. (Color online) Nuclear jet suppression factor $I_{AA} = Y_{AuAu}/Y_{pp}$

- Monotonic suppression with increase of path length, which can be taken as “parton energy loss”

- Where deposited energy goes?
Conical Emission of Intermediate p_T correlations

Two-Particle Correlations

Three-Particle Correlations

✧ Away-side double hump in two-particle correlations
✧ Conical Emission confirmed by three-particle correlations
✧ Seems parton-medium interactions

2014/7/19

HIC
Models for Double-Hump : 1

✧ Cherenkov gluon radiation by superluminal partons

\[\cos \theta_c = 1/n(p) \]

\[n(p) \text{ : Index of refraction} \]
\[p \text{ : Gluon Momentum} \]

PRL 96.172302 (2006)

✧ Shock-wave by supersonic partons

\[\cos \theta_{Mach} = c_s / v_{part} \]

\[c_s \text{ : Speed of sound} \]
\[v_{part} \text{ : Speed of parton} \]

PRL 105.222301 (2010)
Models for Double-Hump : 2

✧ Energy-momentum loss + expanding medium

\[\partial_\mu T^{\mu\nu} = S^\nu \]

\[S^\nu(t, \vec{x}) = \frac{1}{(\sqrt{2\pi}\sigma)^3} \exp \left[-\frac{[\vec{x} - \vec{x}_{jet}(t)]^2}{2\sigma^2} \right] \times \left(\frac{dE}{dt}, \frac{dM}{dt}, 0, 0 \right) \left(\frac{T(t, \vec{x})}{T_{\text{max}}} \right)^3 \]

PRL 105.222301 (2010)

✧ Hot spot + expanding medium

– Split of the hot spot into two directions

2014/7/19
Higher-Order Event-Planes & Flow-Harmonics

Smooth participant density

Expansion to the short-axis direction by pressure gradient

Fluctuating participant density

Expansion to the short-axis directions of event-planes by pressure gradient

✧ Azimuthal distribution of emitted particles

\[\frac{dN}{d\phi} \propto 1 + 2v_2 \cos 2(\phi - \Psi_2) \]

\[+ 2v_3 \cos 3(\phi - \Psi_3) \]

\[+ 2v_4 \cos 4(\phi - \Psi_4) \ldots \]

\[\nu_n = \langle \cos n(\phi - \Psi_n) \rangle \]

\(\nu_n \) : Higher-order flow harmonics

\(\Psi_n \) : Higher-order event planes

\(\phi \) : Azimuthal angle of emitted particles
Higher-Order Flow Harmonics

None-zero $v_n(n>2)$ is observed

Degeneracy of models disentangled

- Initial Condition, shear viscosity of QGP, different expansion mechanism between v_2 & v_3

Backgrounds in correlation functions

Central Collisions

N_{part}: # of participant nucleons in a collision

Centrality~0%

N_{part}~394

Peripheral Collisions

Centrality~100%

N_{part}~2

2014/7/19
Motivation of analysis

✧ Providing experimental results of two-particle correlations after v_n background subtractions

✧ Examine the path length dependence of Ψ_2 dependent intermediate-p_T correlations in order to search for deposited energy from high p_T partons

✧ Search for differences between Ψ_2 & Ψ_3 dependent correlations which may reflects possible different evolution processes between the 2nd- and 3rd-order geometry planes
Analysis Flow-Chart

Single-particle analysis

- Event-Plane (Resolution)
- Flow harmonics v_n
- Pure flow backgrounds
- Tracking efficiency

Two-particle analysis

- Two-particle correlations
- Flow subtracted correlations
- Pair yield per a trigger
- Unfolding of event-plane resolution

2014/7/19
PHENIX 2007 Experiment: Au+Au 200 GeV Collisions

- Minimum Bias trigger: 4.4 billion events
- Trigger, collision vertex, centrality
 - Zero-Degree-Calorimeter (ZDC)
 - Beam-Beam-Counter (BBC)
- Event-plane
 - BBC
 - Reaction-Plane-Detector (RXN)
- Central Arm, $\Delta \phi = \pi$, $|\eta| < 0.35$
 - Drift Chamber (DC)
 - Pad Chambers (PC)
 - Electromagnetic Calorimeter (EMC)
 - Momentum, charged particle tracking
 - Ring Image Cherenkov Detector (RICH)
 - Electron rejection
Event-Plane

Expansion to the initial short-axis direction by pressure gradient

- EP is a direction most particles are emitted after freeze-out
- EP is determined by flow signal itself

EP is determined by RXN and BBC detectors

- RXN (1<|η|<2.8) : 24 segments x 2 sectors
- BBC (3<|η|<3.9) : 64 segments x 2 sectors

\[\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{\sum_i w_i \cos(n \phi_i)}{\sum_i w_i \sin(n \phi_i)} \right) \]

\(\phi_i \) : Azimuthal angle of \(i^{\text{th}} \) segments

\(w_i \) : Weight (Charge etc.) of \(i^{\text{th}} \) segments

2014/7/19
Rapidity Selections in Analysis

✧ Rapidity ranges of CNT, RXN, & BBC

 - 2PC at $|\Delta \eta|<0.35$

 - Rapidity gap between particles & EP to avoid auto-correlations by jets

-3.9 < η < -3.0 -2.8 < η < -1.0 -0.35 < η < 0.35 1.0 < η < 2.8 3.0 < η < 3.9

✧ Raw flow harmonics

$$v_{n}^{raw} = \langle \cos n(\phi - \Psi_{n}^{obs}) \rangle$$

✧ Resolution correction

- Smearing due to limited resolution

$$v_{n} = \frac{\langle \cos n(\phi - \Psi_{n}^{obs}) \rangle}{\langle \cos n(\Psi_{n} - \Psi_{n}^{obs}) \rangle}$$

Event-Plane Resolution
\(v_n \) Results

✧ Consistent results with previous PHENIX measurements
 – Used for background subtractions

Total systematics (%) at \(p_T = 1-2 \) GeV/c

<table>
<thead>
<tr>
<th>Centrality</th>
<th>0-10%</th>
<th>40-50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_2)</td>
<td>4.3%</td>
<td>2.7%</td>
</tr>
<tr>
<td>(v_3)</td>
<td>4.9%</td>
<td>12%</td>
</tr>
<tr>
<td>(v_4)</td>
<td>10%</td>
<td>34%</td>
</tr>
<tr>
<td>(v_4^{(\Psi_4)})</td>
<td>15%</td>
<td>6.5%</td>
</tr>
</tbody>
</table>

Au+Au \(\sqrt{s_{NN}} = 200 \) GeV, EP Method

![Graph showing \(v_n \) results for different centrality classes and \(p_T \) values](image-url)
Two-Particle Correlations

Definition

Ratio of two-particle probability over single-particle ones

\[C(\Delta \phi, \Delta \eta) = \frac{P(\phi^a, \phi^t | \eta^a, \eta^t)}{P(\phi^a | \eta^a)P(\phi^t | \eta^t)} \]

Real Pair

Event mixing also corrects acceptance effects by choosing similar events: centrality, collision points

Correlations = Real/Mixed

Experimental Def.

Ratio of real pair distribution over mixed one

\[C(\Delta \phi, \Delta \eta) = \frac{N_{mix}^{ta} d^2 N_{real}^{ta} / d\Delta \phi d\Delta \eta}{N_{real}^{ta} d^2 N_{mix}^{ta} / d\Delta \phi d\Delta \eta} \]

\[\Delta \phi = \phi^a - \phi^t, \Delta \eta = \eta^a - \eta^t \]

Pair Yield Per a Trigger

Dimension: Number of Particles

\[\frac{1}{N^t} \frac{d^2 N^{ta}}{d\Delta \phi d\Delta \eta} = \frac{1}{2\pi \varepsilon} \frac{N^{ta}}{N^t} C(\Delta \phi, \Delta \eta) \]
Flow Subtraction & Pair Yield per a Trigger (PTY)

✧ Pure flow background

\[F(\Delta \phi) = 1 + \sum_{n=1}^{\Delta \phi/\pi} 2v_t^n v_a^n \cos(n\Delta \phi) \]

✧ Flow subtractions by ZYAM

– Zero Yield At Minimum Assumption

\[j(\Delta \phi) = C(\Delta \phi) - b_0 \left[1 + \sum_{n=1}^{\Delta \phi/\pi} 2v_t^n v_a^n \cos(n\Delta \phi) \right] \]

✧ Pair yield per a trigger (PTY)

– Dimension: number of particles

\[\frac{1}{N_t} \frac{dN^{ta}}{d\Delta \phi} = \frac{1}{2\pi \varepsilon} \frac{N^{ta}}{N_t} j(\Delta \phi) \]

\[\varepsilon \]: Tracking efficiency of associate particles

\[N_t \]: Number of triggers

\[N^{ta} \]: Number of pairs

\[Au+Au, \sqrt{s_{NN}}=200 \text{ GeV, 20-30\%} \]

\[p_t^T \otimes p_t^a = 2-4 \otimes 1-2 \text{ GeV/c} \]
Expansion to the short-axis direction by pressure gradient
- EP: direction most particles are emitted after freeze-out

Selecting trigger particles with respect to Ψ_2 & Ψ_3
- 8 bins: $\phi^{trig} - \Psi_n : [-\pi/n, \pi/n]$

Control of path length of trigger and associate particles

Three p_T combinations: 2-4x1-2, 2-4x2-4, 4-10x2-4 GeV/c
Flow Backgrounds with respect to EP

✧ A Monte Carlo simulation employed
✧ Azimuthal distribution using
 – Measured v_n
 – Observed correlation between EP
 • $<4(\Psi_2-\Psi_4)>=\frac{v_4\{\Psi_2\}}{v_4\{\Psi_4\}}$
 • $<6(\Psi_2-\Psi_3)>=0$
✧ Determine trigger particle relative to EP taking into account EP resolutions
✧ Calculate two-particle correlations

\[
\frac{dN}{d\phi} \propto 1 + \sum_{n=2,3,4} 2v_n \cos n(\phi - \Psi_n)
\]
Flow Backgrounds with respect to EP

(web)

- Good reconstruction of Ψ_2, Ψ_3 dependent correlations by MC simulation
 - Before PTY normalization
- Except around $\Delta \phi = 0, \pi$ where contribution of jet exists

\[
\Psi_2: \text{Out-of-plane } \Psi_2 < 0
\]

\[
\Psi_2: \text{In-plane } \Psi_2 < 0
\]

\[
\Psi_3: \text{Out-of-plane } \Psi_3 < 0
\]

\[
\Psi_3: \text{In-plane } \Psi_3 < 0
\]

$\Delta \phi = \phi^a - \phi^t [\text{rad}]$

40-50% — Correlations

Pure Flow

: EP Direction

: Back-to-Back Direction

2014/7/19
Two-Particle Correlations with respect to EP

✧ Flow subtracted Ψ_2, Ψ_3 dependent correlations
✧ Clear Ψ_2 dependence
✧ No Ψ_3 dependence?
✧ Smearing by neighboring trigger bins due to limited EP resolution
 – Needs unfolding !!
Unfolding Methods of EP Resolution

Fitting Method

\[F(\psi_s)_{\text{raw}} = 1 + 2v_2 \cos(2(\psi_s + \Delta\phi)) + 2v_4 \cos(4(\psi_s + \Delta\phi)) \]

\[F(\psi_s)_{\text{cor}} = 1 + 2v_2 \cos(2(\psi_s + \Delta\phi)) + 2v_4 \cos(4(\psi_s + \Delta\phi)) \]

Au+Au 20-30%, \(\Delta\phi = \pi/24. \)

Iteration Method

\[z = \chi \cos(2(\Psi^{\text{obs}} - \Psi^{\text{real}})) \]

Azimuthal anisotropy of correlation yield corrected by the event-plane resolution

Method by PRC.84.024904 (2011)

✧ Trigger smearing matrix “S”
✧ True & Observed Correlations “A” & “B”
 – Vector elements: Trigger bin
✧ Solve simultaneous equations via iteration

\[B = SA \quad \Rightarrow \quad A = S^{-1}B \]
v_n ($n=2,3,4$) subtracted correlations

Au+Au $\sqrt{s_{NN}}=200$ GeV, v_n ($n=2,3,4$) subtracted

Away-side suppressions

Away-side single peaks

Away-side broad/double-hump shapes

$\Delta \phi = \phi^a - \phi^i$ [rad]
\(p_T \) spectra of Per Trigger Yields

- Hardness increases with trigger and associate \(p_T \)
- Existence of high \(p_T \) particles enhances lot \(p_T \) particles

\[\Phi \quad \Psi \quad 4 \quad \frac{1}{4} \quad |<| \quad \pi \quad - \quad \phi \quad \Delta \quad \text{subtracted} \]

\[\text{Near Side:} |\phi| < \pi/4 \]
\[v_2 \ v_3 \ v_4 \{ \Psi_4 \} \text{ subtracted} \]

\[\text{Away Side:} |\Delta \phi - \pi| < \pi/4 \]
\[v_2 \ v_3 \ v_4 \{ \Psi_4 \} \text{ subtracted} \]

\[\text{Au+Au 200GeV} \]

\[\text{\(N \)} \frac{1}{p_T} \frac{d^2N_{\text{pair}}}{dp_T d\phi} \]

\[\text{Associate } p_T \text{ [GeV/c]} \]

\[\Phi \quad \Psi \quad 4 \quad \frac{1}{4} \quad |<| \quad \pi \quad - \quad \phi \quad \Delta \quad \text{subtracted} \]

\[\text{\(p_T \)}^{\text{hig.}} 4-10 \text{ GeV/c} \]
\[\text{\(p_T \)}^{\text{hig.}} 2-4 \text{ GeV/c} \]
\[\text{\(p_T \)}^{\text{hig.}} 1-2 \text{ GeV/c} \]
Extraction of Double-Hump Position

寝室 of double-hump position via two-Gaussian fitting to away-side (|Δφ−π|<π) at centrality 10%, where double-humps seen

\[F(\Delta \phi) = Ae^{-\frac{(\Delta \phi - \pi - D)^2}{\sigma^2}} + Ae^{-\frac{(\Delta \phi - \pi + D)^2}{\sigma^2}} \]
Two-Gaussian Height

Double-hump height more than one sigma of systematic uncertainties

2014/7/19
Comparison with Models

✧ Cherenkov gluon: <25% of experimental data at $p_T = 1$ GeV/c

✧ Mach-cone & Energy-momentum loss:

 – Independence of p_T is similar to the experimental data

 – 20% larger/smaller than experimental data at $p_T = 2$ GeV/c

✧ Hot-spot: 50% larger than experimental data
Realistic Model Calculation

Au+Au \(\sqrt{s} = 200 \text{ GeV/n} \)

\[p_{T}^{\text{trig}} \in [2,4] \text{ GeV/c}, p_{T}^{\text{asso}} \in [1,2] \text{ GeV/c} \]

\[
\begin{align*}
(\Delta\eta < 2.8) \text{ at PHENIX} \\
(1 < |\Delta\eta| < 2.8) \text{ at PHENIX}
\end{align*}
\]

\[
\begin{align*}
(1 < |\Delta\eta| < 2.8) \text{ at PHENIX} \\
(1 < |\Delta\eta| < 2.8) \text{ at PHENIX}
\end{align*}
\]

\[
\begin{align*}
(1 < |\Delta\eta| < 2.8) \text{ at PHENIX} \\
(1 < |\Delta\eta| < 2.8) \text{ at PHENIX}
\end{align*}
\]

✧ Fluctuations of initial parton energy density
✧ Parton cascade
✧ Event-by-event (3+1)D hydrodynamics
✧ Parton Energy Momentum Loss

2014/7/19
Ψ_2 & Ψ_3 Dependent Correlations at p_T: 2-4x1-2 GeV/c

Ψ_2 dependence

Ψ_3 dependence

Ψ_2 dependence is observed at intermediate-p_T correlations
Near-Side Integrated Yield vs Associate Angle from Ψ_2

Au+Au 200GeV

Ψ_2 dependence
Near Side : $|\Delta \phi| < \pi/4$

- 2-4 \otimes 1-2GeV/c
- 2-4 \otimes 2-4GeV/c
- 4-10 \otimes 2-4GeV/c

✧ Similar near and away-side trends
✧ p_T 2-4x2-4, 4-10x2-4 GeV/c: in-plane \geq out-of-plane
 - Consistent with the parton energy loss picture
✧ p_T 2-4x1-2 GeV/c
 - 0-10%: Out-of-plane > In-plane
 - 40-50%: In-plane > Out-of-plane
 - More than 1σ significance of total systematics
STAR Result of Ψ_2 Dependent Correlations

Au+Au 200 GeV, 20-60%, $3<p_T^{(t)}<4$ GeV/c, $1<p_T^{(a)}<2$ GeV/c, $|\eta|<1$ $v_n(n=2,3,4)$ subtracted

Consistent with the results in mid-central collisions by PHENIX
Interpretation of Ψ_2 Dependent Correlations

Central

Mid-central

Energy Deposit
Energy Re-distribution

Fragmentation
Penetration
Re-distribution Dominance
Penetration Dominance

2014/7/19
Hydro + energy redistribution

Purposes and Methods

- **Purpose of this study**

 Study the collective response to jet propagation in QGP transport of the jet's lost energy

- **Method**

 Hydrodynamical simulations of di-jet asymmetric events in heavy ion collisions

- **Relativistic hydrodynamic equations with source terms**

 Hydrodynamic equations with incoming energy and momentum

 $\partial_\mu T^{\mu\nu} = J^\nu$

 $T^{\mu\nu}$: energy-momentum tensor of the QGP fluid

 J^ν: source term (energy-momentum deposit from jets)

- **Source terms**

 Assume sudden thermalization of deposited momentum inside a fluid cell:

 $$J^\mu(x) = -\sum_a \frac{dp_a^\mu}{dt} \delta^{(3)}(x - x_a(t))$$

 a: index for each jet particle

- **Collective flow induced by a jet**

 Test study result in the case of 1-jet traveling through a uniform fluid

 - Mach cone

 Interference of sound waves induced by a source moving at supersonic speed

 - Vortex

 Vortex ring around the jet passage in 3-D space

 Mach cone carries information about jet energy loss and properties of QGP
Integrated Yield vs Associate Angle from Ψ_3

Au+Au 200GeV Ψ_3 dependence

- 2-4 \otimes 1-2GeV/c
- 2-4 \otimes 2-4GeV/c
- 4-10 \otimes 2-4GeV/c

Near Side: $|\Delta \phi|<\pi/4$

Away Side: $|\Delta \phi-\pi|<\pi/4$

✧ Weak centrality dependence
✧ Event-plane dependence is not clearly seen
 – Flat within systematic uncertainties

$20\text{-}30\%$
Out Look : Event-Shape Engineering

✧ Q-vector

\[Q_{n,x} = \sum_i^{M} \cos(n\phi_i); \quad Q_{n,y} = \sum_i^{M} \sin(n\phi_i); \]

✧ Selection of flow rich events

✧ Differential analysis of medium response

2014/7/19
Summary

✧ v_n subtracted correlations are presented

✧ Non-monotonic path-length dependence is seen in Ψ_2 dependent correlations at low p_T
 – Can be taken as re-distribution of deposited energy?

✧ Non-Ψ_3 dependence is observed due to large systematics
BACK UP
Significance of Double-Hump

✧ Examined the significance of Double-Hump in terms of v_4 systematics
✧ v_2 and v_3 are fixed in flow subtractions but v_4 is varied $\pm 1\sigma$
✧ Lower boundary of yellow band covers that of green band
✧ Significance is $\pm 1\sigma$ level of v_4 systematics

$\Delta \phi = \phi^a - \phi^t [\text{rad}]$
Zero Yield at Near-Side

- Correlation and Pure Flow is fitted at $\Delta \phi = 0$
- Double-hump is not so sensitive to flow subtraction
Consistency check : high-p_T trigger

✧ Three-Centralities
 – 0-20, 20-40, 40-60%
✧ Particle Selections
 – Trigger p_T: 5-10 GeV/c
 – Associate p_T : 1-10 GeV/c
✧ Subtracted Backgrounds
 – Only v_2
✧ Consistent with previous PHENIX results
 (PRC78.014901)

○ : This Analysis
○ : PRC78.014901
Consistency check: mid-\(p_T \) trigger

- Three-Centralities
 - 0-20, 20-40, 40-60%
- Particle Selections
 - Trigger \(p_T \): 4-5 GeV/c
 - Associate \(p_T \): 1-5 GeV/c
- Subtracted Backgrounds
 - Only \(v_2 \)
- Consistent with previous PHENIX results (PRC78.014901)

- This Analysis
- PRC78.014901

2014/7/19
Consistency check: low-p_T trigger

✧ Three-Centralities
 – 0-20, 20-40, 40-60%
✧ Particle Selections
 – Trigger p_T: 2-4 GeV/c
 – Associate p_T: 1-4 GeV/c
✧ Subtracted Backgrounds
 – Only v_2
✧ Consistent with previous PHENIX results (PRC78.014901)

This Analysis

: PRC78.014901

2014/7/19
High p_T Trigger Two-Particle Correlations

Au+Au 200GeV, v_2, v_3 & $v_{4\{\Psi\}}$ subtracted

1/N \, dN/d(Δφ)

Δφ = φ_{asso} - φ_{trig} [rad]

2014/7/19
Intermediate p_T Two-Particle Correlations

$\text{Au+Au } 200\text{GeV, } v_2, v_3 \text{ & } v_4^{\Psi}$ subtracted

$\Delta \phi = \phi_{\text{asso}} - \phi_{\text{trig}} \text{ [rad]}$

$0-10\%$

$p_T^{t,a}:4-10 \times 4-10$

$10-20\%$

$p_T^{t,a}:2-4 \times 2-4$

$20-30\%$

$p_T^{t,a}:2-4 \times 1-2$

$30-40\%$

$p_T^{t,a}:2-4 \times 0.5-1$

$40-50\%$

$p_T^{t,a}:1-2 \times 1-2$

$0-10\%$

$p_T^{t,a}:1-2 \times 0.5-1$

$10-20\%$

$p_T^{t,a}:1-2 \times 0.5-1$

$20-30\%$

$p_T^{t,a}:1-2 \times 0.5-1$

$30-40\%$

$p_T^{t,a}:1-2 \times 0.5-1$

$40-50\%$

$p_T^{t,a}:1-2 \times 0.5-1$
Ψ_2 Dependent Correlations: p_T 2-4x1-2 GeV/c

$\text{Au+Au } \sqrt{s_{NN}}=200\text{GeV, Pure Flow: } v_n (n=2,3,4) + \langle \cos 4(\Psi_2'\Psi_4') \rangle \text{ by ZYAM}$

$\Delta \phi = \phi^A - \phi^t [\text{rad}]$

2014/7/19
Ψ_3 Dependent Correlations : p_T 2-4x1-2 GeV/c

Au+Au $\sqrt{s_{\text{NN}}}=200$GeV, Pure Flow: v_n (n=2,3,4) + $\langle \cos 4(\Psi^2-\Psi^3) \rangle$ by ZYAM

![Graph showing Ψ_3 dependent correlations](image)

$\Delta \phi = \phi^a - \phi^t$ [rad]

2014/7/19
Ψ_2 Dependent Correlations : p_T 2-4x2-4 GeV/c

Au+Au $\sqrt{s_{NN}}=200$ GeV, Pure Flow: $v_n (n=2,3,4) + \langle \cos 4(\Psi_2 - \Psi_4) \rangle$ by ZYAM

$\Delta \phi = \phi^a - \phi^t$ [rad]
Ψ_3 Dependent Correlations: p_T 2-4x2-4 GeV/c

Au+Au $\sqrt{s_{NN}}=200$ GeV, Pure Flow: $v_n(n=2,3,4) + \cos 4(\Psi_2^{T}\Psi_3)$ by ZYAM

\[\Delta \phi = \phi^a - \phi^t [\text{rad}] \]
Ψ_2 Dependent Correlations : p_T 4-10x2-4 GeV/c

Au+Au $\sqrt{s_{NN}}=200$ GeV, Pure Flow: $v_n (n=2,3,4) + <\cos 4(\Psi_2-\Psi_4)>$ by ZYAM

$\Delta \phi = \phi^a - \phi^t$ [rad]

2014/7/19
Ψ_3 Dependent Correlations: p_T 4-10x2-4 GeV/c

Au+Au $\sqrt{s_{NN}}$=200GeV, Pure Flow: $v_n(n=2,3,4) + <\cos(\Psi_2^\pm \Psi_4)>$ by ZYAM

$\Delta\phi = \phi^a - \phi^t [\text{rad}]$
Ψ_2 Dependent Correlations : p_T 2-4x1-2 GeV/c
Ψ_3 Dependent Correlations: p_T 2-4x1-2 GeV/c

2014/7/19 HIC
Gravity Position of Two-Particle Correlations

Definition

\[A_{LR} = \frac{\int d\Delta \phi \Delta \phi Y(\Delta \phi)}{\int d\Delta \phi Y(\Delta \phi)} - \begin{cases} 0 & \text{if near} - \text{side} \\ \pi & \text{if away} - \text{side} \end{cases} \]

Integral Ranges

Near – Side : \[|\Delta \phi| < \pi / 3 \]

Away – Side : \[|\Delta \phi - \pi| < \pi / 3 \]
Gravity position vs trigger angle from Ψ_2
Gravity position vs trigger angle from Ψ_3

- **Near:** $|\Delta \phi| < \pi/3$
 - 0-10%
 - 10-20%
 - 20-30%
 - 30-40%
 - 40-50%

- **Away:** $|\Delta \phi| > \pi/3$
 - 0-10%
 - 10-20%
 - 20-30%
 - 30-40%
 - 40-50%

$2014/7/19$
Ghost track
- A single particle is counted as \textbf{two} tracks
Merged tracks
- \textbf{Two} particles are counted as \textbf{one} track
Real/Mix pair ratio should be 1 if an ideal detector
Systematic Uncertainties

✧ Flow v_n measurements
 – Systematic difference within RXN segments
 – Rapidity dependence of EP : RXN-BBC difference
 – Matching cut of CNT particles

✧ Two-particle correlations
 – Systematics from v_n
 – Matching cut of CNT particles

✧ Unfolding of event plane dependent correlations
 – Difference of two methods : Fit & Iteration Methods
 – Parameter in the iteration method
Azimuthal Anisotropy of PTY

- Integrated yield vs associate angle from EP is translated into azimuthal anisotropy v_n^{PTY}
- v_n^{PTY} can be compared with single particle v_n because the dimension of PTY is “# of particles”

- v_n^{PTY} is extracted via Fourier fitting

\[F(\phi^a - \Psi_2) = a \{ 1 + 2v_2^{PTY} \cos 2(\phi^a - \Psi_2) + 2v_4^{PTY} \cos 4(\phi^a - \Psi_2) \} \]

\[F(\phi^a - \Psi_3) = a \{ 1 + 2v_3^{PTY} \cos 3(\phi^a - \Psi_3) \}, \]

- Anisotropy of associate particles per a trigger \rightarrow Anisotropy of associate particles per a event

\[v_{n, cor}^{PTY} = v_n^{PTY} + v_n^{trig} \cos n(\phi^t - \phi^a) \]
\(v_2^{PTY} \)

✧ Positive hadron \(v_2 \) (Hydrodynamics)

✧ Positive \(\pi^0 \) \(v_2 \) (Parton energy-loss)
 – Superposition of those assembles only positive \(v_2 \)

✧ Near & away-side \(v_2^{PTY} \)
 – Positive value at 40-50%
 – Near-side negative value at 0-10%

✧ New effects need to be considered

✧ Possible re-distribution of deposited energy in longer path direction
\(\mathbf{V}_3^{PY}\)

- Positive hadron \(v_3\) (Hydrodynamics)
- Near & away-side \(v_3^{PY}\) at 30-40%
 - Positive near-side
 - Negative away-side
- Weak centrality dependence

- Different near & away-side, as well as centrality dependences from those of \(v_2^{PY}\)
- Possible different evolution processes between the 2nd- and 3rd-order geometry planes
Interpretation of Ψ_3 Dependent Correlations

Away-Side

- Energy Deposit
- Energy Re-distribution

Near-Side

- Fragmentation
- Penetration

Redistribution Dominance Penetration Dominance

2014/7/19
Collision Centrality

- A degree of overlap of two colliding nuclei
 - Distance between center of the nuclei \Rightarrow multiplicity \Rightarrow charge deposited in BBC
- Require each percentile contains same # of events
 - Most-central Collision : 0%
 - Most-peripheral Collision : 100% (PHENIX determines it up to 92%)

2014/7/19
Nuclear Modification Factor R_{AA}

$R_{AA} = \frac{d^2N^{AA}/dp_Td\eta}{N_{coll}d^2N^{pp}/dp_Td\eta}$

✧ Ratio of invariant yield scaled by that in p+p collision with scale

 – $R_{AA} < 1$ (suppression), $R_{AA} = 1$ (no change), $R_{AA} > 1$ (enhance)

✧ Suppression of hadron production

✧ No suppression of direct photon
Contributions of v_n ($n > 2$) in correlations

2Par. Correlation

$C(\Delta\phi) = b^{2P} (1 + 2v^{2P}_{1,1} \cos \Delta\phi + 2\sum_{n=2}^{6} v^{EP}_{n} \cos n\Delta\phi)$

From 2PC method
From EP method

Double-hump & ridge of long-rapidity correlation explained
Short-rapidity correlation with v_n subtraction to discuss parton behavior

Track at $|\eta| < 2.5$ with EP from full FCAL
3.3 < $|\eta|$ < 4.8
Data Set & Particle Selection

✧ PHENIX year 2007 Experiment
✧ Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV
 – Minimum Bias trigger 4.4 billion events
✧ Charged hadron selection
 – 2σ cut of track-hit matching
 – Electron veto
 – Energy/momentum cut of high p_T particles for background rejection
 • $E^{EMC}<0.30+0.20*p_T$ rejected for $p_T>5.0$ GeV/c
 – Pair cut of miss-reconstructed hadron pairs
Tracking Efficiency

Efficiency correction by ratio of uncorrected invariant yield over fully corrected ones

\[\varepsilon = \frac{\sigma^{uncor}}{\sigma^{cor}} \]

Ratio calculated by fitting functions to the invariant yields

Fit Function

\[F(p_T) = p_0 \times \left(\frac{p_1}{p_1 + p_T} \right)^{p_2} \]
Event Plane Calibration

ϕ_i : Azimuthal angle

\mathcal{W}_i : Weight (Charge etc.)

Raw distribution

$$Q_x = \sum_i w_i \cos(n\phi_i), \quad Q_y = \sum_i w_i \sin(n\phi_i)$$

$$\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{Q_y}{Q_x} \right)$$

Re-centering

$$Q_x^{\text{Rec}} = \frac{Q_x - \langle Q_x \rangle}{\sigma_x}, \quad Q_y^{\text{Rec}} = \frac{Q_y - \langle Q_y \rangle}{\sigma_y}$$

$$\Psi_n^{\text{Rec}} = \frac{1}{n} \tan^{-1} \left(\frac{Q_y^{\text{Rec}}}{Q_x^{\text{Rec}}} \right)$$

Fourier correction

$$n \Psi_n^{\text{Fourier}} = n \Psi_n^{\text{Rec}} + n \Delta \Psi_n$$

$$n \Delta \Psi_n = \sum_k \left\{ A_k \cos(kn \Psi_n^{\text{Rec}}) + B_k \sin(kn \Psi_n^{\text{Rec}}) \right\}$$

$$A_k = -\frac{2}{k} \langle \cos(kn \Psi_n^{\text{Rec}}) \rangle, \quad B_k = \frac{2}{k} \langle \sin(kn \Psi_n^{\text{Rec}}) \rangle$$
Event Plane Resolution

EP Resolution

PRC 58.1671 (1998)

 Resolution +/-\(\eta\)

\[
\sigma_{EP}^n = \sqrt{\left\langle \cos kn (\Psi_n^{EP+\eta} - \Psi_n^{EP-\eta}) \right\rangle}
\]

= \left\langle \cos kn (\Psi_n^{EP+/-\eta} - \Psi_n) \right\rangle

= \frac{\pi}{8} \chi_n^2 \left[I_{(k-1)/2} \left(\frac{\chi_n^2}{4} \right) + I_{(k+1)/2} \left(\frac{\chi_n^2}{4} \right) \right]^2

 Resolution +&/-\(\eta\)

\[\chi_n \rightarrow \sqrt{2} \chi_n\]

\[
\sigma_{EP}^n = \frac{\pi}{8} 2 \chi_n^2 \left[I_{(k-1)/2} \left(\frac{2\chi_n^2}{4} \right) + I_{(k+1)/2} \left(\frac{2\chi_n^2}{4} \right) \right]^2
\]
v_n systematics : RXN segments

![Graph showing v_n versus p_T for different RXN segments.](image-url)
v_n systematics: Matching Cut

Au+Au $\sqrt{s_{NN}}=200$GeV, EP Method

- **V2**
 - 0-10, all RXN segments
 - 10-20, (a)
 - 20-30, (b)
 - 30-40, (c)
 - 40-50, (d)

- **V3**
 - (f)
 - (g)
 - (h)
 - (i)
 - (j)

- **V4**
 - (k)
 - (l)
 - (m)
 - (n)
 - (o)

- **V4(Ψ2)**
 - (p)
 - (q)
 - (r)
 - (s)
 - (t)

p_T [GeV/c]
v_n systematics: RXN-BBC Difference

Au+Au $\sqrt{s_{NN}}=200\text{GeV}$, EP Method

2σ matching

p_T [GeV/c]
Table of total v_n systematic uncertainties

Table 3.8: Summary of percentile ratio of v_n systematic uncertainties

<table>
<thead>
<tr>
<th>Centrality %</th>
<th>p_T GeV/c</th>
<th>v_2 sys. %</th>
<th>v_3 sys. %</th>
<th>v_4 sys. %</th>
<th>$v_4{\Psi_2}$ sys. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>0.5-1.0</td>
<td>5.449</td>
<td>6.387</td>
<td>24.87</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>1.0-2.0</td>
<td>4.32</td>
<td>4.911</td>
<td>10.1</td>
<td>14.66</td>
</tr>
<tr>
<td></td>
<td>2.0-4.0</td>
<td>4.363</td>
<td>4.131</td>
<td>4.412</td>
<td>11.39</td>
</tr>
<tr>
<td></td>
<td>4.0-10.0</td>
<td>10.43</td>
<td>6.184</td>
<td>21.67</td>
<td>191.3</td>
</tr>
<tr>
<td>10-20</td>
<td>0.5-1.0</td>
<td>3.658</td>
<td>7.992</td>
<td>28.53</td>
<td>12.17</td>
</tr>
<tr>
<td></td>
<td>1.0-2.0</td>
<td>2.891</td>
<td>6.431</td>
<td>20.16</td>
<td>12.27</td>
</tr>
<tr>
<td></td>
<td>2.0-4.0</td>
<td>2.69</td>
<td>6.163</td>
<td>27.64</td>
<td>13.72</td>
</tr>
<tr>
<td></td>
<td>4.0-10.0</td>
<td>3.124</td>
<td>13.62</td>
<td>19.09</td>
<td>32.09</td>
</tr>
<tr>
<td>20-30</td>
<td>0.5-1.0</td>
<td>2.811</td>
<td>9.469</td>
<td>35.48</td>
<td>9.633</td>
</tr>
<tr>
<td></td>
<td>1.0-2.0</td>
<td>2.485</td>
<td>7.818</td>
<td>28.85</td>
<td>8.422</td>
</tr>
<tr>
<td></td>
<td>2.0-4.0</td>
<td>2.391</td>
<td>6.163</td>
<td>28.03</td>
<td>6.577</td>
</tr>
<tr>
<td></td>
<td>4.0-10.0</td>
<td>2.98</td>
<td>9.503</td>
<td>32.24</td>
<td>12.21</td>
</tr>
<tr>
<td>30-40</td>
<td>0.5-1.0</td>
<td>2.506</td>
<td>12.42</td>
<td>35.81</td>
<td>7.385</td>
</tr>
<tr>
<td></td>
<td>1.0-2.0</td>
<td>2.462</td>
<td>9.695</td>
<td>29.88</td>
<td>6.509</td>
</tr>
<tr>
<td></td>
<td>2.0-4.0</td>
<td>2.556</td>
<td>9.673</td>
<td>36.75</td>
<td>5.913</td>
</tr>
<tr>
<td></td>
<td>4.0-10.0</td>
<td>2.934</td>
<td>14.18</td>
<td>44.32</td>
<td>31.73</td>
</tr>
<tr>
<td>40-50</td>
<td>0.5-1.0</td>
<td>2.575</td>
<td>13.8</td>
<td>32.96</td>
<td>6.338</td>
</tr>
<tr>
<td></td>
<td>1.0-2.0</td>
<td>2.688</td>
<td>12.06</td>
<td>34.44</td>
<td>6.479</td>
</tr>
<tr>
<td></td>
<td>2.0-4.0</td>
<td>3.224</td>
<td>11.7</td>
<td>45.4</td>
<td>10.71</td>
</tr>
<tr>
<td></td>
<td>4.0-10.0</td>
<td>7.877</td>
<td>33.53</td>
<td>77.07</td>
<td>29.33</td>
</tr>
</tbody>
</table>
Systematics of Correlations

- **Systematics propagated from \(v_n \) measurements**
 - Varying \(v_n \) value \(\pm 1\sigma \) (# of harmonics \(3 \times \pm 1\sigma \) \(2 = 6 \) combinations)
 - Systematics: RMS of above 6 combinations

- **Systematics from matching cut**
 - Systematics: Difference between \(2.5\sigma - 2.0\sigma \) (main)

- **Total Systematics**
 - Quadrature-sum of above two systematics

Centrality:20-30%

- \(v_2 \ v_3 \ v_4 \) sub.
 - **Centrality:20-30%**
 - \(v_2 \pm 1\sigma \)
 - \(v_3 \pm 1\sigma \)
 - \(v_4 \pm 1\sigma \)
 - Systematics

Centrality:20-30%

- \(v_2 \ v_3 \ v_4 \) sub.
 - \(\sigma=2.0 \)
 - \(\sigma=2.5 \)
 - \(2.5\sigma-2.0\sigma \)
EP Resolution in Monte Carlo

- Analytical formula of EP Resolution (RXN:S+N) as a function of χ_n

 \[\langle \cos [kn(\Psi_n^{obs} - \Psi_n^{real})] \rangle = \frac{\sqrt{\pi}}{2\sqrt{2}} \chi_n e^{-\chi_n^2/4} \left[I_{(k-1)/2} \left(\frac{\chi_n^2}{4} \right) + I_{(k+1)/2} \left(\frac{\chi_n^2}{4} \right) \right]. \]

- Relative distribution between real and observed EP calculated using χ_n

 \[\frac{dN^{\text{ev}}}{d[kn(\Psi_n^{obs} - \Psi_n^{real})]} = \frac{1}{\pi} e^{-\chi_n^2/2} \left[1 + z\sqrt{\pi}[1 + \text{erf}(z)]e^{z^2} \right] \quad z = \frac{1}{\sqrt{2}} \chi_n \cos n(\Psi_n^{obs} - \Psi_n^{real}) \]

PRD 48.1132 (1993)

PRC 58.1671 (1998)
$\Psi_2 - \Psi_4$ correlation in Monte Carlo

- $\Psi_2 - \Psi_4$ correlation at p_T 1-2&2-4GeV: $\langle \cos [4(\Psi_2 - \Psi_4)] \rangle = v_4 \{\Psi_2\} / v_4 \{\Psi_4\}$
 - To avoid jet contribution to the $\Psi_2 - \Psi_4$ correlation

- Obtain χ_{42} & reconstruct relative distribution between Ψ_2 & Ψ_4

\[
\langle \cos [4(\Psi_2 - \Psi_4)] \rangle = \frac{\sqrt{\pi}}{2\sqrt{2}} \chi_{42} e^{-\chi_{42}^2/4} \left[I_0 \left(\frac{\chi_{42}^2}{4} \right) + I_1 \left(\frac{\chi_{42}^2}{4} \right) \right]
\]

\[
\frac{dN^{eve}}{d[kn(\Psi_n^{obs} - \Psi_n^{real})]} = \frac{1}{\pi} e^{-\chi_n^2/2} \left[1 + z\sqrt{\pi}[1 + \text{erf}(z)]e^{-z^2} \right]
\]

$z = \frac{1}{\sqrt{2}} \chi_n \cos n(\Psi_n^{obs} - \Psi_n^{real})$
$\Psi_2 - \Psi_3$ correlation

A : RXN North
B : BBC South
C : MPC North
D : MPC South
EP Resolution Correction : Iteration-1

✧ Trigger bin is also smeared due to limited EP resolution as v_n

– Add an offset $\lambda=1.0$ to correlation Y to avoid possible divisions by zero

Raw Correlation

Offset | Trigger Bin

0	1 - $Y(0,k)$
1	1 - $Y(1,k)$
2	1 - $Y(2,k)$
3	1 - $Y(3,k)$
4	1 - $Y(4,k)$
5	1 - $Y(5,k)$
6	1 - $Y(6,k)$
7	1 - $Y(7,k)$

$A(k) = \Delta\phi$ Bin

$A(k) = \begin{pmatrix} 1 - Y(0,k) \\ 1 - Y(1,k) \\ 1 - Y(2,k) \\ 1 - Y(3,k) \\ 1 - Y(4,k) \\ 1 - Y(5,k) \\ 1 - Y(6,k) \\ 1 - Y(7,k) \end{pmatrix}$

$k = 0, \cdots, 23$

Smearing Effect

Trigger Bin

$A(k) = \begin{pmatrix} s_0 & s_1 & s_2 & s_3 & s_4 & s_3 & s_2 & s_1 \\ s_1 & s_0 & s_1 & s_2 & s_3 & s_4 & s_3 & s_2 \\ s_2 & s_1 & s_0 & s_1 & s_2 & s_3 & s_4 & s_3 \\ s_3 & s_2 & s_1 & s_0 & s_1 & s_2 & s_3 & s_4 \\ s_4 & s_3 & s_2 & s_1 & s_0 & s_1 & s_2 & s_3 \\ s_3 & s_4 & s_3 & s_2 & s_1 & s_0 & s_1 & s_2 \\ s_2 & s_3 & s_4 & s_3 & s_2 & s_1 & s_0 & s_1 \\ s_1 & s_2 & s_3 & s_4 & s_3 & s_2 & s_1 & s_0 \end{pmatrix}$

$S = \sum_n s_n = 1, s_n$: Ratio from n^{th} away-bin

Smeread Correlation

Correction Matrix

Corrected Correlation

$B(k) = SA(k)$

$C(k) = (c_{ij})$

$c_{ij} = \begin{cases} \frac{A(i,k)}{B(i,k)} & (i = j) \\ 0 & (i \neq j) \end{cases}$

$A_{cor}(k) = C(k)A(k)$
EP Resolution Correction : Iteration-2

- Start of iteration : experimental results (already smeared once)
- Obtained correction is not true
- Iteration until conversions of each coefficients
 - 300 Loops

Notation in Iteration

\[A \rightarrow A^{(n)} \]

\[B \rightarrow B^{(n)} \]

\[C \rightarrow C^{(n)} \]

\[A^{\text{cor}} \rightarrow A^{(n+1)} \]

Smoothing

- Preventing a divergence of statistical fluctuations among \(\Delta \phi \) bins
- \(2r = 0.20 \& 0.30 \)

\[c_{ii}^{(n)}(k) = (1 - r) c_{ii}^{(n)}(k) + \left(\frac{r}{2} \right) c_{ii}^{(n)}(k - 1) + \left(\frac{r}{2} \right) c_{ii}^{(n)}(k + 1) \]

2014/7/19
EP Resolution Correction : Fitting Method

✧ Assuming correlation yield has anisotropy with respect to EP
✧ Correction by EP resolution as done in \(v_n \) measurements
 — Method by PRC.84.024904(2011)
✧ Offset \(\lambda = 1.0 \) to avoid possible division by zero

\[\Psi_2 \text{ dependent case} \]

\[
\lambda + Y^{\text{cor}}(\phi_s, \Delta \phi) = \frac{\lambda + b_0 \left[1 + 2v_2^{Y} \sigma_2 \cos 2(\phi_s + \Delta \phi) + 2v_4^{Y} \sigma_4 \cos 4(\phi_s + \Delta \phi) \right]}{\lambda + b_0 \left[1 + 2v_2^{Y} \cos 2(\phi_s + \Delta \phi) + 2v_4^{Y} \cos 4(\phi_s + \Delta \phi) \right]} \]

\[\Psi_3 \text{ dependent case} \]

\[
\lambda + Y^{\text{cor}}(\phi_s, \Delta \phi) = \frac{\lambda + b_0 \left[1 + 2v_3^{Y} \sigma_3 \cos 3(\phi_s + \Delta \phi) \right]}{\lambda + b_0 \left[1 + 2v_3^{Y} \cos 3(\phi_s + \Delta \phi) \right]} \]
Near-Side Integrated Yield vs Associate Angle from Ψ_2

Au+Au 200GeV
Ψ_2 dependence
Near Side : $|\Delta \phi| < \pi/4$

- 2-4 \otimes 1-2GeV/c
- 2-4 \otimes 2-4GeV/c
- 4-10 \otimes 2-4GeV/c

(a) 0-10%
(b) 10-20%
(c) 20-30%
(d) 30-40%
(e) 40-50%

2014/7/19
Away-Side Integrated Yield vs Associate Angle from Ψ_2

Au+Au 200GeV
Ψ_2 dependence
Away Side : $|\Delta \phi_{\pi\pi}| < \pi/4$

- **2-4 \times 1-2 GeV/c**
- **2-4 \times 2-4 GeV/c**
- **4-10 \times 2-4 GeV/c**

(a) 0-10%
(b) 10-20%
(c) 20-30%
(d) 30-40%
(e) 40-50%

Integrated Yield

2014/7/19
Near-Side Integrated Yield vs Associate Angle from Ψ_3

Au+Au 200GeV

Ψ_3 dependence
Near Side : $|\Delta \phi| < \pi/4$

- **2-4 \otimes 1-2GeV/c**
- **2-4 \otimes 2-4GeV/c**
- **4-10 \otimes 2-4GeV/c**

[Graphs showing integrated yield vs $\phi^a - \Psi_3$ for different pseudorapidity intervals (a) 0-10%, (b) 10-20%, (c) 20-30%, (d) 30-40%, (e) 40-50%).]
Away-Side Integrated Yield vs Associate Angle from Ψ_3

Au+Au 200GeV

Ψ_3 dependence

Away Side: $|\Delta \phi - \pi| < \pi/4$

- $2-4 \otimes 1-2$GeV/c
- $2-4 \otimes 2-4$GeV/c
- $4-10 \otimes 2-4$GeV/c

(a) 0-10%
(b) 10-20%
(c) 20-30%
(d) 30-40%
(e) 40-50%

2014/7/19
Anisotropy of particles per a jet ➔
Anisotropy of particles per a event

\[
\left\{ 1 + 2v_n^{PTY} \cos n(\phi^a - \Psi_n) \right\} \times \left\{ 1 + 2v_n^t \cos n(\phi^t - \Psi_n) \right\} \\
= \left\{ 1 + 2v_n^{PTY} \cos n(\phi^a - \Psi_n) \right\} \times \left\{ 1 + 2v_n^t \cos n(\phi^a - \phi^t) \cos n(\phi^a - \Psi_n) \right\} \\
\approx 1 + 2v_n^{PTY} \cos n(\phi^a - \Psi_n) + 2v_n^t \cos n(\phi^a - \phi^t) \cos n(\phi^a - \Psi_n)
\]

\[
v_n^{PTY, cor} = v_n^{PTY} + v_n^{trig} \cos n(\phi^t - \phi^a)
\]