Flow Measurements at the RHIC and LHC, What Have We Learned? What is Needed?

Takahito Todoroki University of Tsukuba

2014 DNP-JPS Joint Meeting @Hawaii Island 2014/Oct/9th

Session EJ: Mini-Symposium on Flow-Like Observables in Heavy Ion Collisions

Contents

- Overview of previous measurements and calculations in A+A collisions
- Collectivity in p(d)+A collisions
- Event-Shape Study

Initial Fluctuations

Simplified Distribution

- Initial spatial anisotropy ⇒
 Momentum anisotropy
- Only second-order event-plane

Ev-by-Ev Fluctuating Distribution

Higher-order event-planes

$$dN/d\phi \propto 1 + \sum 2v_n \cos n(\phi - \Psi_n)$$

$$\varepsilon_n^{part} = \frac{\sqrt{\langle r^2 \cos n\phi_{part} \rangle^2 + \langle r^2 \sin n\phi_{part} \rangle^2}}{\langle r^2 \rangle},$$

$$\psi_n^{part} = \frac{atan2(\langle r^2 \cos n\phi_{part} \rangle, \langle r^2 \sin n\phi_{part} \rangle) + \pi}{n}$$

Session EJ : T. Todoroki

2014 DNP-JPS Meeting

Differential vn measurements

RHIC

 Sizable higher order flow harmonics vn is observed in both RHIC and LHC energy ranges

Collision Energy Dependence

- ~30% increase of v₂ from RHIC to LHC, still not saturated
- More v_{3,4} data will come at ~20 GeV range by RHIC BES

IC and η/s determination

- Stringent constraints to IC and shearviscosity by higher-order harmonics
 - Still Multiple Combinations
- Temperature dependence of viscosity $\eta/s(T_{\rm RHIC}) < \eta/s(T_{\rm LHC})$

Identified Hadron vn

- Mass dependence
- Constituent quark number dependence
- Empirical Scaling of vn

 $v_n/n_{cq}^{n/2}$ vs KE_T/n_{cq}

- v₂ ncq scaling +
- $V_2^{1/2} \propto V_n^{1/n}$
- Possible acoustic-viscous
 dumping
 Lacey et.al. arXiv:1105.3782
 Staig et. al. PRC84.034908

$$\delta T_{\mu\nu}(n,t) = \exp(-\beta' n^2) \delta T_{\mu\nu}(n,0), \quad \beta' = \frac{2\eta}{3s} \frac{1}{\bar{R}^2} \frac{t}{T},$$

Heavy Flavor v₂

RHIC

- Suppression of Heavy flavor & none-zero v₂ indicate substantial energy loss in medium and nearly perfect fluid
- Short relaxation time and/or small diffusion coefficients

Very high pr vn at LHC

- None-zero v₂ up to 40 GeV/c for single hadrons and 150GeV for jets at a similar amplitude
- Reflection of path-length dependence in jet quenching

Direct Photon vn puzzle

- Most of hydrodynamic models failed
- Magnetic field is also disfavored due to none zero v₃; Thirdorder plane very weakly correlated with reaction plane where the field is generated
- New Idea: Thermal photon by slow quark chemical equilibrium

Late chemical equilibrium

Ridge & vn in p(d)+A collisions

 Ridge and v_{2,3} are observed in high multiplicity events in p(d)+A collisions

ALICE: Physics Letters B 726 (2013) ATLAS: Phys. Rev. Lett. 110(2013) CMS: Phys. Lett. B 7198(2013) PHENIX PRL111.212301(2013)

Initial or Final State Effect

CGC

Hydrodynamics

- Both initial state (CGC) and final state (hydro) effects can explain vn in small collisions systems
- Need more constraints by differential measurements

- Mass dependence in low p_T
- Baryon/Meson difference at intermediate p_{T}
- Qualitatively consistent with hydrodynamics. How about mass dependence in CGC frame work? Not conclusive.

Non-flow effects in p+A collisions

2014 DNP-JPS Meeting

Session EJ : T. Todoroki

Scaling among p+A and A+A vn

ATLAS arXiv:1409.1792v1

- Scaled vn in A+A
 collisions match that in p+A collisions
- Suggests similar origin of vn in both systems and similar medium response to initial geometry in both systems

Multi Particle Cumulants

- M.P.C is less sensitive to non-flow than 2-part. cum.
 - ~10% reduction of v₂ in both p+A and A+A collisions
- Convergence in v₂{n=4,6,8,LYZ} in p+A and A+A collisions
 - Consistent with hydrodynamics prediction Bzdak et.al. arXiv:1311.7325

Hydrodynamics with Jets

- Momentum deposit from energized partons
- CMS p_T^{||} vs A_j around jet axis is qualitatively reproduced
- It should also be interesting to see jet effects in soft physics
 - vn, HBT, low-pT 2PC

Event-by-Event Fluctuations of vn

LHC Data

Hydro Calculation

- Eve-by-Eve fluctuation seems to be independent of shear-viscosity
- Possible probe to access IC

Event-Shape Engineering : Flow Strength Control Schukraft et

Schukraft et.al: arXiv:1208.4563

- Event Shape Engineering(ESE)
- [q_n]: Strength of Flow $(q_n^x, q_n^y) = \frac{1}{\sum_i} (\sum_i \cos n\phi_i, \sum_i \cos n\phi_i)$ $|q_n| = q_n^{x^2} + q_n^{y^2}$
- Selection of e-b-e vn via strength of flow vector
- Possible control of initial geometry
 J.Jia et.al : arXiv:1403.6077

2014 DNP-JPS Meeting

Vn-Vm correlations

• Compared with Glauber and MC_KLN $\epsilon_n - \epsilon_m$ correlations

Access to IC if linear response to initial eccentricities

ESE : Twist Effect

Jia et. al. arXiv:1403.6077

- Twisted medium between forward and backward directions emerging from participant fluctuations
- Possible underestimate

 of vn i.e. overestimate of
 shear-viscosity due to
 neglecting decorrelated
 term

2014 DNP-JPS Meeting

Session EJ : T. Todoroki

ESE : Twist Effect

2014 DNP-JPS Meeting

- **Event Selection** $2(\Psi_2^F - \Psi_2^B) > 0.5$ $3(\Psi_3^F - \Psi_3^{\mathcal{B}^{\text{plane}}}) \xrightarrow{\text{lane}} 1.5 \overset{\text{o.o1}}{\sim} \varepsilon_3^{\text{back}} < \varepsilon_3^{\text{for}}.$ 0.02 (c) 0.005 $\mathfrak{V}_n^c = \left\langle \cos n(\phi - \Psi_n) \right\rangle / \operatorname{Res} \left\{ n \Psi_n \right\}$ $v_n^{-9,0^2} = \left\langle \sin n \left(\phi - \Psi_n^{-0.095} \right) \right\rangle - \sqrt{Res} \left\{ n \Psi_n \right\}$
- Twisted term vn^s observed
 - Underestimate of vn
- This study should be done for experimental data

Summary

- Higher-order flow harmonics v_n in A+A collisions
 - More stringent constraints to IC & viscosity
 - Still multiple combinations of those
 - Medium shows possible acoustic-viscous dumping
 - Substantial HF parton energy loss in medium
 - None zero direct photon vn puzzle
- Collectivity in p(d)+A collisions
 - Flow like features similar to those in A+A collisions
 - Need to see mass dependence of CGC calculation
 - Not Conclusive
 - Jet-Medium coupling study using Jet+Hydro framework
- Event Shape Study is a possible probe to initial conditions