The Study Of Direct Photon Azimuthal Anisotropy At RHIC-PHENIX Experiment

Sanshiro Mizuno for PHENIX collaboration University of Tsukuba, RIKEN 30pTR-10

What is Azimuthal Anisotropy?

Azimuthal anisotropy is relative deviation of the number of emitted particle between in and out of plane.

It is strongly related to **initial geometry** and η /s of QGP. Expansion makes anisotropy in momentum space.

2014/03/30

Higher Order Anisotropy

$$E\frac{d^3N}{dp^3} \propto [1 + 2\sum_{n=1}^{\infty} \nu_n \cos\{n(\phi - \Phi_n)\}]$$
$$\nu_n = <\cos\{n(\phi - \Phi_n)\} >$$

Event Plane(Φ_n **) :** The base direction for expansion v_n : strength of anisotropy

Initial geometry is deformed because of statistics fluctuation. It makes higher order azimuthal anisotropy.

It is important to constrain initial geometry calculating model and η/s of QGP.

2014/03/30

What is Direct Photon?

Direct photon is all photons except ones from hadron decay.

- Penetrating QGP without scattering
- Created from various sources

Direct Photon Azimuthal Anisotropy

It is expected that the photon sources are identified by azimuthal anisotropy measurement (initial geometry dependence).

- prompt : $v_2 \sim 0$
- Jet fragmentation : v₂>0
- parton energy loss : v₂<0
- thermal QGP : v₂≥0
- thermal HG : v₂>0
 Superposition is measured.

 $\gamma^{\text{dir.}}$ v₂ has been measured at PHENIX and ALICE.

2014/03/30

P.R.L. 109, 122302(2012)

 $\gamma^{dir.}$ v₂ is close to 0 in high p_T, which is consistent with expectation. It has strong v₂ as one of hadron in low p_T.

ALICE also measure $\gamma^{dir.} v_2$ and it is found that it has similar trend. **2014/03/30** JPS @ University of Tokai

Deviation of Temperature

 T_{γ} = 233±14±19 MeV is observed by direct photon spectrum.

It is much higher than $T_{had} = 100-120$ MeV which is freeze-out temperature.

Azimuthal anisotropy is created from initial geometry deformation. It is needed the enough expansion time to have large v₂.

$$T_{\gamma} \sim T_{had}$$

 $T_{v} >> T_{had}$

2014/03/30

Underestimation for $\gamma^{dir.} v_2$

Model calculation is underestimated for v_2 while spectra is well described.

Additional component is needed to describe experiment results.

- Strong magnetic field
- Blue shift

2014/03/30

What makes large v₂?

Magnetic Field effect

2nd of Event Plane is strongly correlated with Reaction Plane while 3rd is not.

v₂ is strong : v₃ is weak

Blue shift effect

Observed temperature is affected by flow and it is overestimated.

 v_2 and v_3 are strong

 v_3 measurement helps to understand.

 $T_{obs} \sim T_{real} \sqrt{\frac{1 + \langle \beta \rangle}{1 - \langle \beta \rangle}}$

<β> : average expansion velocity

2014/03/30

Analysis flow

 $\checkmark \ \pi^0 \ \text{and} \ \gamma^{\text{inc.}} \ v_n \ \text{measurement}$

✓ $γ^{\text{dec.}} v_n$ simulation
It is simulated from π⁰ v_n.

2014/03/30

Summary

Direct photon is powerful tools to study QGP. Azimuthal anisotropy is related with initial geometry. Higher order is thought to be more important.

Direct photon v_2 has been measured at PHENIX and ALICE. It is found that it has as strong v_2 as hadron, but it is not yet understood.

Model calculation is underestimated.

Direct photon v_3 is expected to help understanding. Measurement is ongoing.

2014/03/30

BACK UP

2014/03/30

2nd and 3rd of Event Plane correlation

2014/03/30

The angles of particle emission and Event Plane are measured by different detectors in order to auto-correlation (e.g. Jet). Event Plane is determined as a strong direction of flow.

$$Q_x = \langle w_i \cos(n\phi_i) \rangle$$

$$Q_y = \langle w_i \sin(n\phi_i) \rangle$$

$$\Phi_n = atan2(Q_y, Q_x)/n$$

i : direction of detector w_i : weight

2014/03/30

QGP temperature measurement

Direct photon at low p_T provides temperature of QGP.

T_{eff} = 233 ± 14 ± 19 MeV (Min. Bias.) T_{ini} = 300~600 MeV

T_{eff}(LHC) = 304±51 MeV (2.76TeV,0-40%)

T = 170MeV (Lattice QCD) T = 100-120MeV (hadron freeze-out)

The photon from hot matter is observed.

2014/03/30

 R_{AA} of direct photon is consistent with unity in high p_T . This is consistent with the expectation that $\gamma^{dir.}$ coming from initial scattering is dominant.

2014/03/30

Measurement of higher order v_n

 v_3 and v_4 have weak centrality dependence while v_2 has strong. It indicates v_3 and v_4 are created by the initial geometry deformation.

2014/03/30

PID v_n measurement

 v_n has mass and meson/baryon dependence.

Higher harmonics are created from initial geometry deformation, they are affected by the effect of QGP expansion.

2014/03/30

KE_T scaling for PID v_n

Meson is scaled well, while proton isn't scaled.

2014/03/30

γ^{dir.} measurement by ALICE

Similar trend with RHIC-PHENIX is observed by LHC-ALICE.

2014/03/30

Strong magnetic field is thought to affect photon emit angle. It is created in perpendicular direction to Reaction Plane.

2014/03/30

Late state photon production with q-q annihilation effect seems to work well.

2014/03/30

arXiv:1308.2440v2

Measured temperature is shifted from real temperature due to flow effect.

2014/03/30

Thermal photon v₂

P.R.L. 96,202302(2006)

Much smaller than PHENIX direct photon v_2 .

2014/03/30

PHENIX detector

CNT coverage $|\eta| < 0.35$ $\phi : 180$

- Tracking detector DC, PC1, PC2, PC3
- particle identification
 RICH, TOF, AGEL, EMCal

EMCal is used to detect photon. PC3 is used to remove charged particle.

Event Plane is measured by RxN detector.

2014/03/30

Check to be consistent with $\pi^{\pm}\,v_3$

 $\pi^0 v_3$ is measured up to 4.0 GeV/c with several centralities. It is confirmed to be consistent with $\pi^{\pm} v_3$.

Decay photon v_n is simulated from π^0 and the other meson v_3 .

2014/03/30

PHENIX CNT DETECTORS IN SIDE VIEW

- BBC(3.1<|η|<3.8)
- MPC(3.1<|η|<3.8)
- RxN(1.0<|η|<2.8)

Event are classified by these detectors. Event Plane are measured by these detectors.

2014/03/30

Event Plane calculation

Event Plane is calculated by three steps.

- 1. gain correction
- 2. re-centering

3. flattening

$$\nu_{n,real} = \nu_{n,obs} / \text{Res}\{\Psi_n\}$$

Reaction Plane detector(RxN) Inner : 1.5 < $|\eta|$ < 2.8 Outer : 1.0 < $|\eta|$ < 1.5

 ρ_n behavior is similar to centrality dependence of charged particle v_n. s₃ and s₄ are smaller than s₂ but not zero in non-central.

2014/03/30

It related to photon production angle??

2014/03/30