Measurement Of Direct Photon Higher Order Azimuthal Anisotropy In √s_{NN}=200GeV Au+Au Collisions at RHIC-PHENIX (RHIC-PHENIX実験における√s_{NN}=200GeV 金・金衝突での

直接光子の高次方位角異方性の測定)

水野 三四郎 数理物質科学研究科 物理学専攻 高エネルギー原子核衝突実験グループ 博士論文公開発表会(本審査) 3/7/2015

Outline

✓ Introduction

- High Energy Heavy Ion Collision
- Direct photon analysis
- Higher order azimuthal anisotropy

✓ Analysis

- PHENIX experiment
- Direct photon v_n measurement

✓ Results and Discussion

- Jet contribution for azimuthal anisotropy in high p_T
- Direct photon v_n
- Blast wave model

✓ Conclusion

Introduction

2015/3/7

Quark-Gluon Plasma (QGP) at heavy ion collision

Quarks and gluons move freely at high temperature and dense matter.

High energy heavy ion collision experiment

- RHIC at BNL (Au+Au : 200, 62.4, 39 GeV, Cu+Cu : 200 GeV)
- LHC at CERN (Pb+Pb : 2760 GeV, p+Pb : 5020 GeV)

2015/3/7

History of collision and photon emission

The properties of photon in high energy heavy ion collision

- emitted during all stages of the collisions
- don't interact with the medium

We can access the evolution of the collision.

2015/3/7

Identifying direct photon sources

Direct photons are all photons except those originating from hadron decay. It is challenging to identify photon sources.

by p_T distribution? emitting angle?

2015/3/7

The excess of direct photon

The excess of direct photon has been measured in the wide p_T range.

The methods of virtual photon and external conversion photon are sensitive to low p_{T} region.

Less than 4 GeV/c, direct photons are included by 20 % in inclusive photon.

$$R_{\gamma} = N_{inc.}/N_{dec.}$$

2015/3/7

Direct photon p_T spectra

The p_T spectra in Au+Au collision is enhanced compared with that in p+p collision scaled by the number of binary collisions less than 4 GeV/c.

The excess of p_T spectra is fitted and effective temperature is extracted. (Freeze-out temperature of hadrons are about 100MeV)

Centrality	Effective temperature
0% - 20%	239 ± 25 ± 7 (MeV)
20% - 40%	260 ± 33 ± 8 (MeV)
40% - 60%	225 ± 28 ± 6 (MeV)

Photons in low p_T are mainly radiated from very hot medium at early time of collisions.

2015/3/7

Azimuthal anisotropy (Elliptic flow)

- anisotropic pressure gradient in participant zone (Initial state)
- QGP expansion (hydrodynamic motion, η/s) (η is shear viscosity and s is entropy density)
- hadron production mechanism (coalescence)

(1) : Initial geometry is converted into final azimuthal anisotropy

(2) : (expected to be) sensitive to η/s

2015/3/7

Photon emitting angle dependence

It is expected that the emitted angle of photons depends on their sources.

- Initial hard scattering : v₂≈0
- Medium induced : v₂≤0
- Jet fragmentation : v₂≥0
- Radiation from expanding medium : v₂>0

The measurement of photon azimuthal anisotropy is a powerful probe to identify the photon sources.

2015/3/7

Elliptic flow of direct photon

P.R.L. 109, 122302(2012)

the initial hard scattering are dominant plus no interaction of photon in QGP ($R_{AA} \approx 1$).

Low p_T : Comparable to hadron v_2 at around 2 GeV/c2015/3/7Defense (M.Sanshiro)

Direct photon puzzle

Thermal radiation photons are dominant in low p_{T} region.

Elliptic flow :

It was expected that photon has small v_2 , since it includes ones from early stage having small v_2 .

-> Photons are dominantly emitted at late stage.

p_T spectra :
 Emitted from very hot medium (T_{eff} ≈ 240MeV).
 -> Photons are dominantly emitted at early stage.

There is a discrepancy, and it is called "direct photon puzzle". There is no models to explain both observables simultaneously.

2015/3/7

fluctuation of the shape of participant zone. It is expected to constrain the initial geometry calculating model and η/s of QGP. 2015/3/7 Defense (M.Sanshiro) $\begin{array}{c} 0.2 \\ \bullet v_2 \{\psi_2\} \\ \bullet v_3 \{\psi_3\} \\ \bullet v_4 \{\psi_4\} \\ 0.15 \\ \bullet v_4 \{\psi_4\} \\ \bullet v_4 \{\psi_4$

Why direct photon v₃ is measured?

Radial flow effect (blue shift effect) : It makes apparent temperature higher than true temperature. Photons from late state are dominant. $v_2>0: v_3>0$

Large magnetic field : Direction of magnetic field is strongly related with Ψ_2 (R.P.) but not with Ψ_3 . $v_2>0: v_3\approx 0$

v₃ measurement could provide additional constraint on photon production mechanism.

P.R.C 89, 044910 (2014)

 $T' = T \sqrt{\frac{1+\beta}{1-\beta}}$

True Temperature

2015/3/7

My activity

Poster & Talk : Analysis

Analysis

2015/3/7

PHENIX detector

Central Magnet

4.4 billion events are analyzed.

$$v_n = \left\langle \cos\left\{n\left(\phi - \Psi_n\right)\right\} \right\rangle$$

2015/3/7

Defense (M.Sanshiro)

Side View

Centrality determination

Centrality : The size of participant zone is classified by multiplicity in BBC.

Beam-Beam Counter (BBC) : th_o Measures charged particles.

2015/3/7

Event plane determination

Event plane is the direction defined by the number of emitted particles. It is determined for each harmonic "n".

$$\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{\sum w_i \sin n\phi_i}{\sum w_i \cos n\phi_i} \right)$$
$$\operatorname{Res}(\Psi_n) = \left\langle \cos \left\{ n(\Psi_n^{\operatorname{true}} - \Psi_n^{\operatorname{obs.}}) \right\} \right\rangle$$

Reaction Plane detector(RxN)

Muon Piston Calorimeter (MPC)

RxN(In) RxN(Out) RxN(I+O) MPC BBC RxN(In)+MPC

Photon reconstruction

Pad chamber (PC) : space point of charged particle track

Electromagnetic calorimeter (EMCal)

Photons are reconstructed

- Energy threshold : E > 0.2GeV
- Shower shape : $\chi^2 < 3$
- Charged particle rejection at PC3 : $\sqrt{(dz)^2 + (r_T \sin{(d\phi)})^2} > 6.5$

 π^0 (-> γ + γ) reconstruction

- Asymmetry cut : $|E_1 E_2|/(E_1 + E_2) < 0.8$
- Photons are detected in same sector
- Invariant mass of $\gamma + \gamma$

$$Mass = \sqrt{2E_1E_2(1-\cos\theta)}$$

Defense (M.Sanshiro)

Count

0.1

0.2

invariant mass(GeV/c²)

0.3

Inclusive photon v_n measurement

2015/3/7

Defense (M.Sanshiro)

Neutral pion v_n measurement

2015/3/7

Defense (M.Sanshiro)

Hadronic decay photon

We can not identify photons come from hadron decay experimentally. They are simulated by Monte-Carlo simulation.

Particle Data Group

meson	invariant $mass(MeV/c^2)$	decay mode	branching ratio
π^0	134.98	2γ	(98.823 ± 0.034) $\%$
		$e^+e^-\gamma$	(1.174 ± 0.035) %
η	547.86	2γ	(39.41 ± 0.20) %
		$\pi^+\pi^-\gamma$	(4.22 ± 0.08) $\%$
		$e^+e^-\gamma$	(6.9 ± 0.4) $ imes$ 10^{-3}
		$\pi^0 2\gamma$	(2.7 ± 0.5) $ imes$ 10^{-4}
ω	782.65	$\pi^0\gamma$	(8.28 ± 0.28) $\%$
ρ	775.26	$\pi^+\pi^-\gamma$	(9.9 ± 1.6) $ imes$ 10^{-3}
		$\pi^0\gamma$	(6.0 ± 0.8) $ imes$ 10^{-4}
$\eta^{'}$	957.78	$ ho\gamma$	(29.1 ± 0.5) %
		$\omega\gamma$	(2.75 ± 0.23) $\%$
		2γ	(2.20 ± 0.08) $\%$
		$\mu^+\mu^-\gamma$	(1.08 ± 0.27) $ imes$ 10^{-4}

2015/3/7

Meson p_T spectra and v_n estimation

The meson p_T spectra and v_n are estimated from pion.

p_T spectra : m_T scaling

$$p_{T,meson} = \sqrt{p_{T,pion}^2 + M_{meson}^2 - M_{pion}^2}$$

v_n : the number of constituent quark scaling (NCQ)

$$p_{T,meson} = \sqrt{\left(\sqrt{p_{T,\pi}^2 + M_{\pi}^2} - M_{\pi} + M_{meson}\right)^2 - M_{meson}^2}$$

2015/3/7

Hadronic decay photon v_n measurement

Decay photon v_n is simulated from meson input.

Systematic uncertainty

- Propagated from pion p_T spectra
- Propagated from pion v_n
- Propagated from meson input
- Event plane determination

Direct photon v_n measurement

- Propagated from decay photon v_n
- Propagated from R_{v}
- Event plane determination

2015/3/7

Defense (M.Sanshiro)

arXiv:1405.3940

5

P.R.L. 104, 132301

10

p_(GeV/c)

Results & Discussion Neutral pion v_n

2015/3/7

The results of neutral pion v_n

In low p_T

Consistent with charged pion v_n . **Collective and radial expansion of** QGP.

In high p_T

Hadrons are dominantly originated from jet fragmentation.

Jet kinematic and jet bias in event plane as well as jet property inside QGP

1.0<|η|<1.5 (RxN(Out)) 1.0<|η|<3.9 (RxN(In)+MPC) |η|<0.35 (CNT)

Integrated v_n of neutral pion in high p_T

Central : v_n is positive.

Path length dependence of energy loss Peripheral : $v_2 \& v_4$ are positive while v_3 is negative. Jet bias on determining event plane It relates with initial geometry?

2015/3/7

a Multiphase transport model (AMPT)

event generator (HIJING) + parton cascade (ZPC) + hadronization (including quark coalescence) + hadron cascade (P.R.C 72, 064901)

Au+Au 200 GeV are generated to test jet bias. 6.3 M events including Jet > 20 GeV are analyzed. AMPT simulation describes v_n in low p_T region.

Simulation data are analyzed with the same condition analyzed in experimental measurement.

The trends of v_2 and v_3 are similar to the experimental measurement.

2015/3/7

Event plane is defined with p_T selected particles

Event planes are defined at RxN (1 < $|\eta|$ < 2.8) with the particles which are

- less than 2 GeV/c : dominantly come from hydrodinamic expanding medium
- larger than 2 GeV/c : dominantly originated from jet fragmentation

2015/3/7

The $\Delta\eta$ dependence of v₂ with biased event plane

The $\Delta\eta$ dependence of v_n with biased event plane

2015/3/7

Summary (Neutral pion v_n)

■ In high p_T region

\Box Central collision : $v_n > 0$

✓ jet energy loss depending on path length □ Peripheral collision : $v_2 \& v_4 > 0$ and $v_3 < 0$

 \checkmark jet bias on determining event plane

AMPT study for jet effect

Event plane is defined with the particles mostly emitted from expanded medium.

 \checkmark jet energy loss depending on path length

Event plane is affected by the particles originating from jet.

✓ Near side jet : v_n large.

 \checkmark Away side jet : $v_2 \& v_4$ large and v_3 small

Results & Discussion Direct photon v_n

2015/3/7
The comparison of neutral pion and direct photon v_n

- In high p_T region
 Direct photon v_n is close to zero.
- In low p_T region
 Direct photon has non-zero and positive v₂ and v₃.

2015/3/7

Centrality dependence of $\gamma^{dir.}$ and π^0 in high p_T

- Photon v_n is close to zero.
- There is the difference between photon and neutral pion.

It is understood that prompt photons which $v_n \approx 0$ are relatively dominant.

Centrality dependence of $\gamma^{\text{dir.}}$ and $\pi^0 v_n$ in low p_T

Strong dependence for v_2 : weak dependence for v_3

The strength of photon v_n in low p_T region relates with initial geometry. It could be suggested that photons from late stage are dominant.

2015/3/7

Blast wave model prediction for photon observables

Based on hydrodynamic model.

Observables in low p_{τ} region are well described by the parameters when kinetic freeze-out.

6 parameters

10⁴ 10⁴ dv/dp¹ d¹ 10² 10² 1

10⁻⁴

10⁻⁶

2015/3/7

- Kinetic freeze-out temperature : T_f
- Average transverse rapidity : $< \rho >$
- Transverse anisotropy : ρ_2 , ρ_3

PIDed Hadron p₋ spectra

T_f=104.48±0.57[MeV

2

3

(ρ) **=0.661±0.004**

Spatial density anisotropy : s_2 , s_3

Centrality:0-20%

• π[±] × 10

 $K^{\pm} \times 5$ $p\overline{p} \times 1$

p_{_}(GeV/c)

< <

0.15

0.1

0.05

2

Photon observables predicted by blast wave model

The photon p_T spectra and v_n are predicted as a massless particle. They are well described.

The temperature (104 MeV) is much less than 240 MeV obtained by the exponential equation. It is due to blue shift correction.

2015/3/7

Photon observables predicted by blast wave model

The p_T spectra is well described by

- Low temperature (T_f=104) with radial flow $<\rho>=0.66$
- High temperature (T_f=240) with radial flow < ρ >=0 v_n=0 with radial flow < ρ >=0

Blast wave could suggest that photon puzzle is understood by the radial flow effect.

2015/3/7

Summary (Direct photon v_n)

■ In high p_T region

D Photon v_n is close to zero while hadron shows non-zero v_n .

✓ Prompt photons which are $v_n \approx 0$ are relatively dominant.

In low p_T region

- \Box It is found non-zero and positive v₃ in low p_T.
- \Box The centrality dependence of photon v_n similar to that of pion v_n .
 - ✓ Photon v_n also depends on the initial geometry.
 - $\checkmark\,$ Photons from late stage could be dominant.

Blast wave model

- □ Blast wave model describes photon observables well.
 - ✓ Photon puzzled could be understood by radial flow effect.

Conclusion

Neutral pion and direct photon v_n are measured in $\sqrt{s_{NN}} = 200 \text{GeV}$ Au+Au collisions at RHIC-PHENIX experiment.

• Neutral pion v_n

✓ The trends in high p_T region are understood with the superimposition of jet effects.

• Direct photon v_n

✓ Photons in high p_T are dominantly originated from hard scattering.

- ✓ Photon from late stage of collisions could be dominant.
- ✓ The possible explanation of "photon puzzle" could be strong radial flow effect.

2015/3/7

Medium effect $(R_{\Delta\Delta})$

photon

R_{AA}=1 : not modified

-> Emitted from initial hard scattering

 $R_{AA} >> 1$: There are other photon sources which are not in p+p collisions.

2015/3/7

Charged hadron v_n

The trend of centrality dependence of v_n is similar to that of eccentricity.

2015/3/7

Event Plane correlation between different harmonics

P.R.L. 107, 252301 (2011)

 Ψ_2 and Ψ_3 are uncorrelated.

2015/3/7

Identified charged particle v_n

arXiv:1412:1038

It is observed that

- all harmonics have mass ordering
- there are meson and baryon splitting

All particles are scaled by modified NCQ scaling.

(a) :
$$v_2(KE_T)/n_q$$

(b) : $v_n^{1/n}$ scaling
(a)+(b) : $v_n(KE_T)/n_q^{n/2}$

2015/3/7

Photon emitting angle dependence

Photon	Property	p _T range	v ₂
Prompt	Initial of collision	high p _T	v ₂ = 0
Jet fragmentation	Jet quenching Fragmentation	intermediate	v ₂ > 0
Jet energy loss	Path length	intermediate	v ₂ < 0
Thermal radiation (QGP)	Medium expanding	low	v ₂ ≥ 0
Thermal radiation (HG)	Medium expanding	low	v ₂ > 0

Defense (M.Sanshiro)

Jet quenching

High p_T hadrons are originated from jet fragmentation. Away side jet deposits its energy inside QGP.

v_n measurement in high p_T at LHC

Single hadron v_2 , v_3 and v_4 are measured up to 40-60 GeV/c at CMS. Jet v_2 is measured up to p_T =200 GeV/c at ATLAS.

They are used to study jet energy loss depending on path length inside of QGP.

arXiv:1306.6469

Since it is difficult to measure mesons except for pion, the other mesons p_T spectra are estimated by m_T scaling from pion experimental data.

P.R.C 69,034909 P.R.L. 101,232301 P.R.C 82,011902 P.R.C 84,044902

2015/3/7

Meson v_n estimation

It has been known that hadron v_n as a function of KE_T are scaled by the number of constituent quark. Meson v_n is estimated from pion v_n .

$$p_{T,meson} = \sqrt{\left(\sqrt{p_{T,\pi}^2 + M_{\pi}^2} - M_{\pi} + M_{meson}\right)^2 - M_{meson}^2}$$

The number of constituent scaling Centrality 0-50% arXiv:1412:1038 (b) -0.12 (a) $v_{3} \{\Psi_{3}\} / n_{q}^{3/2} x 2.5$ 0.1 $V_n/n_q^{n/2}$ 0.02 :KE_T/n_a correlated sys. of π^* -0.02 0.5 1.5 0 0.5 1.5 2 2 0 KE_T/n_α [GeV] n

2015/3/7

AMPT simulation for pion v_n

Pion v_n from AMPT simulation agrees well with charged pion v_n .

Jet bias on determining event plane

In low p_T : v_n(EP : p_T<2) > v_n(EP :p_T>2)

In high p_T : v₂(EP : p_T<2) < v₂(EP :p_T>2) v₃(EP : p_T<2) > v₃(EP :p_T>2)

2015/3/7

Jet bias on determining event plane

Away side jet : depending on harmonics $v_2 & v_4$ positive and v_3 negative

It appears in peripheral event due to the low multiplicity.

2015/3/7

Integrated v_n with biased event plane

Model comparison of photon v₂

PRC 84,054906 PRC 89,034908

(Orange) Transport model considering photons from hadron phase (Blue, red) Fireball model

Hydrodynamic calculations (cyan, pink, and violet) including photons from late state, are much underestimated.

Model comparison of v_2 and v_3

PRC 84,054906P.R.D 89,026013PRC 89,034908arXiv:1404.3714

Dark violet is based on magnetic field effect, upper limit is shown. Model calculations of photon v_3 are much smaller than experimental data.

The data of v_3 may help to constrain parameters in model calculations.

2015/3/7

External photon conversion method

Real photons from external photon conversion at the Hadron Blind Detector (HBD) readout plane are detected.

• Extend low p_T limit

```
Consistent inclusive photon v<sub>n</sub> well
2015/3/7 Defense (M.Sanshiro)
```


M_{HBD}: Real track

External photon conversion method

- 1) real photon converts to e⁺e⁻ in HBD backplane
- 2) default assumption: track come from the vertex
- 3) momentum of the conversion tracks will be mis-measured (see black tracks)
- 4) apparent pair-mass (about 12MeV) will be measured for phtons
- 5) assume the same tracks originate in the HBD backplane
- 6) re-calculate momentum and pair mass with this "alternate tracking model"
- 7) for true converted photons M_{atm} will be around zero

Real track estimated track

The ratio of v_2 to v_3 in p_T region

 π^{\pm} : arXiv:1412:1038 Model : arXiv:1403.7558 Private communication

- Photons don't have strong centrality dependence at around 2-3 GeV/c
- Pions increase from central to peripheral

Photon and pion show different centrality dependence.

2015/3/7

The event plane dependence of direct photon v_n

2015/3/7

 $\gamma^{dir.}$ v₂ in high E_T region are consistent with 0 within systematic uncertainty, while π^0 has positive v₂.

2015/3/7

photon v_n measurement by ALICE

It is also observed that $\gamma^{dir.} v_2$ is positive in low p_T at LHC-ALICE. v_3 measurement is ongoing.

2015/3/7

Photon p_T spectra and v_n with blue shift effect

Assumption of photon source

- temperature decreases with the time : T(t)
- acceleration increases with the time : a(t)
- azimuthal anisotropy increases with the time v_n(p_τ, t)
- thermal photon momentum distribution :

$$n(p_T, t) = \frac{p_T}{\exp\left(p_T/T(t)\right) - 1}$$

 p_T spectra and v_n at final state are calculated as :

$$n^{\text{fin.}}(p_T) = \int dt n(p_T, t) \qquad v_n^{\text{fin.}}(p_T) = \frac{\int dt n(p_T, t) v_n(p_T, t)}{\int dt n(p_T, t)}$$

Effective temperature is taken via fitting by exponential equation to p_T spectra. The difference with experimental measurement is estimated as :

$$(V_{\text{obs.}} - V_{\text{cal.}})/E(\text{stat.} \oplus \text{sys.})$$

 $V_{obs.}$: experimental measurement E : error of $V_{obs.}$ $V_{cal.}$: calculation result

2015/3/7

Basic assumption for yield, velocity, and anisotropy

The temperature is decreased from 300 MeV to 100 MeV. The time is defined by temperature.

Calculation with basic assumption

The effective temperature and v_n with blue shift is higher than those without correction.

The photons from late stage relatively increase in high p_T region due to blue shift correction.

2015/3/7

Additional assumption

• <u>Yield dependence</u> Since photon source expands, the yield is assumed to get large with time.

$$N(t) = \int dp_T t^b n(p_T, t)$$

- <u>Anisotropy (velocity) dependence</u> $a(t) = A(1 - t^{\alpha})$
- Azimuthal anisotropy dependence

$$v_n(p_T, t) = V(p_T) \cdot t^c$$

2015/3/7

Defense (M.Sanshiro)

T : **V**

 $V:\Lambda$

T':

p_T spectra and v_n with relative yield dependence $N(t) = \int dp_T t^b n(p_T, t)$ p_T spectra σ **<** ⁿ **^** b=0:290.78[MeV] b=0 $N(t) = \int t^{b} n(p_{T}, t) dt = \frac{b=0}{b=1/10}$ b=1/10 : 290.29[MeV] •σ V, b=1/5 b=1/5 : 289.71[MeV] b = 1/2b=1/2 : 287.47[MeV] σ V, 0.1 0.1 b=1 10⁻¹ 10⁻³ 0.05 0.05 10⁻⁵ 89[MeV 0 10^{-7} 248.60[MeV] 10

2

3

p_(GeV/c)

Photons from late stage : low temperature & large v_n

2

3

p_(GeV/c)

The both of effective temperature and v_n are affected.

2015/3/7

p_(GeV/c)

Defense (M.Sanshiro)

 $\sigma \mathbf{T}_{eff}$

-2
p_T spectra and v_n with acceleration dependence

Effective temperature significantly decreases with increasing " α ". The v_n is a slightly affected.

p_T spectra and v_n with anisotropy dependence

Since p_T spectra is not affected, effective temperature is not varied.

The v_n increases with "c" decreasing.

2015/3/7

Comparison with experimental measurement

The differences (σT_{eff} and σv_2) are varies uniquely with the parameters " α ", "b", and "c". They are selected so that $T_{eff.}$ and v_2 are comparable to the experimental measurement.

2015/3/7

The "b" and "c" are constrained

The parameters "b" and "c" are limited so that the calculations agree with experimental measurements within 1 σ .

The limitation of time evolution

The development of photon yield and azimuthal anisotropy are constrained.

The p_T spectra and v_n with selected parameters

Parameter "b" is selected so that effective temperature is comparable to experimental measurement. The "c" is chosen to be comparable to v_2 .

2015/3/7

The summary of calculations

The summary of calculations			
Initial temperature	Effective temperature	True temperature	Average emission time
300 (MeV)	238.79 - 238.80 (MeV)	130.17 - 164.41 (MeV)	0.69 - 0.87
400 (MeV)	237.29 - 240.38 (MeV)	128.61 - 146.09 (MeV)	0.86 - 0.92
500 (MeV)	237.97 - 238.08 (MeV)	128.52 - 138.59 (MeV)	0.91 - 0.94
600 (MeV)	236.27 - 236.72 (MeV)	128.15 - 135.28 (MeV)	0.94 - 0.95

Table 5.3: The summary of true temperature and average emission time. The time of freeze-out is defined as 1.

Thermal photon contribution

Thermal photon contribution to all photons are estimated.

It is found that thermal photons significantly drop down at around 2 GeV/c.

(Thermal + pQCD) photon v_n is smaller than experimental results. The other photon contribution such as jet could be dominant in the region of 2 < p_T < 5 GeV/c.

2015/3/7

Comparison of neutral pion v₂ with previous results

They are consistent within systematic uncertainty.

2015/3/7

Comparison of neutral pion v₂ with previous results

They are consistent within systematic uncertainty.

2015/3/7

Comparison of inclusive photon v₂ with previous results

They are consistent within systematic uncertainty.

2015/3/7

Comparison of neutral pion v_2 with charged pion v_2

They are consistent within systematic uncertainty.

2015/3/7

Comparison of neutral pion v₃ with charged pion v₃

They are consistent within systematic uncertainty.

2015/3/7

Comparison of neutral pion v_3 with charged pion v_3

They are consistent within systematic uncertainty.

2015/3/7

Comparison of direct photon v₂ with previous results

They are consistent within systematic uncertainty.

2015/3/7