Direct photon collective flow in Au+Au collisions at $\sqrt{s_{NN}}$ = 200GeV

XXIV QUARK MATTER

DARMSTADT 2014 University of Tsukuba, RIKEN(JP)

PHIENIX

Sanshiro Mizuno

Introduction

Direct photon: all photons except those coming from hadron decays. They are powerful tools to study the QGP.

- Good probes of the early stages of collisions since they penetrate the QGP
- Created during all stages

It is found that $\gamma^{dir.}$ has as large v_2 as hadron and it has not yet understood.

How do we understand this physics?

Direct photon v₃ originated from the initial geometry fluctuation may help disentangling different sources of photons.

Analysis

Real photons are measured by EMCal.

Event Plane (Ψ_n) is estimated by Reaction Plane detector (RxN) and MPC.

The inner and outer rings of the RxN and the MPC are located on either sides of the nominal vertex.

EMCal : $|\eta| < 0.35$

 $RxN(In+Out): 1.0 < |\eta| < 2.8$ $RxN(In)+MPC: 1.5 < |\eta| < 3.8$

MPC: $3.1 < |\eta| < 3.8$

Measurement & Result1

Direct photon v_n is extracted from inclusive photon v_n , decay photon v_n , which is simulated from $\pi^0 v_n$, and R_y . *:see below

 $v_n^{dir.} = rac{R_{oldsymbol{\gamma}}v_n^{inc.} - v_n^{dec.}}{R_{oldsymbol{\gamma}} - 1} \stackrel{\text{\tiny 1.6}}{ imes_{1.2}^{1.4}}$ PRL 104, 132301 v_n^{dir} : Direct photon v_n 2007+2010 v_n^{inc} : Inclusive photon v_n v_n^{dec} : Decay photon v_n $p_T[\text{GeV}/c]$ R_{γ} : The excess of photon (= N_{inc}/N_{dec})

It is found that γ^{dir.} has as large v₃ as hadron!!

Result2 & Conclusion

- $\succ \gamma^{\text{dir.}}$ has non-zero v_3 independent of centrality.
- ightharpoonup Magnitude of $\gamma^{dir.}$ v_3 is similar to π^0 v_3 .
- > This measurement could be one of the keys in understanding the production of $\gamma^{dir.}$ in heavy ion collisions.
- > They are consistent within sys.error measured by conversion photon analysis. (*: see below)

Theoretical calculations indicate that the ratio of $\gamma^{dir.}$ v_2/v_3 is more sensitive to η /s than hadrons and can serve as a visco (arXv:1403.7558v1 in right figure).

The v_2/v_3 ratio from this analysis has large systematic uncertainties. The canceling of the large correlated systematic errors, which are coming from photon PID, π^0 PID, have yet to be implemented. This will be done in the next few months.

