Measurements of Two-Particle Correlations with respect to Higher-Order Event Planes in √s_{NN}=200 GeV Au+Au collisions at RHIC-PHENIX

Pre-Defense Session Nov 6th 2013 Takahito Todoroki High Energy Nuclear Physics Group

Outline

- Introduction
 - Quark Gluon Plasma (QGP)
 - Previous Measurements and Theoretical Models
 - Higher-Order Flow Contributions in Two-Particle Correlations
- Analysis
 - Data Set & Experimental Set Up
 - Flow and Two-Particle Correlation Measurements
 - Correlations with respect to Event Planes
- Results & Discussion
 - Inclusive Trigger Correlations
 - Event Plane Dependent Correlations
- Summary

INTRODUCTION

Quark Gluon Plasma (QGP)

- A fluid of quark and gluons deconfined from hadrons at high energy-density ε & 16.0 temperature T
- Predicted transition ε & T
 by Lattice-QCD
 - $\epsilon_c \simeq 1.0 [GeV/fm^3]$
 - T_c ~ 170 [MeV]
- Relativistic Heavy Ion Collisions at RHIC
 - $-\epsilon$ ~5.0 15.0 [GeV/fm³]

Relativistic Heavy Ion Collider

	Year	Species	√s [GeV]	∫Ldt	N _{tot} (sampled)	Data Size
Run1	2000	Au - Au	130	1 ub ⁻¹	10 M	3 TB
Run2	2001/02	Au - Au	200	24 ub ⁻¹	170 M	10 TB
		Au - Au	19		< 1 M	
		р-р	200	0.15 pb ⁻¹	3.7 B	20 TB
Run3	2002/03	d - Au	200	2.74 nb ⁻¹	5.5 B	46 TB
		р-р	200	0.35 pb ⁻¹	6.6 B	35 TB
Run4	2003/04	Au - Au	200	241 ub ⁻¹	1.5 B	270 TB
		Au - Au	62.4	9 ub ⁻	58 M	10 TB
Run5	2005	Cu - Cu	200	3 nb⁻¹	8.6 B	173 TB
		Cu - Cu	62.4	0.19 nb ⁻¹	0.4 B	48 TB
		Cu - Cu	22.4	2.7 ub ⁻¹	9 M	1 TB
		р-р	200	3.8 pb⁻¹	85 B	262 TB
Run-6	2006	р-р	200	10.7 pb ⁻¹	233 B	310 TB
		р-р	62.4	0.1 pb ⁻¹	28 B	25 TB
Run-7	2007	Au - Au	200	813 µb⁻¹	5.1 B	650 TB
Run-8	2007/08	d - Au	200	80 nb ⁻¹	160 B	437 TB
		p - p	200	5.2 pb ⁻¹	115 B	118 TB
		Au - Au	9.2		few k	

DHENIX Dun Summary

Accelerators at Brookhaven National Laboratory

- Tandem van de Graaff
- Linear Accelerator
- Booster Synchrotron
- Alternating Gradient Synchrotron
- Relativistic Heavy Ion Collider

- p+p : 510 GeV
- d+Au, Cu+Cu, Cu+Au, Au+Au: 200GeV
- U+U : 193 GeV

2013/11/06

Space-Time Evolution

Collective Expansion

Fluctuating Parton Density

- Expansion with respect to Ψ_{n} $E \frac{d^{3}N}{dp^{3}} = \frac{d^{2}N}{2\pi dp_{T} d\eta} \left\{ 1 + \sum 2v_{n} \cos n(\phi - \Psi_{n}) \right\}$ $v_{n} = \langle \cos n(\phi - \Psi_{n}) \rangle$ ϕ : azimuthal angle of emitted particles
 - Ψ : azimuthal angle of event plane

Higher-Order Flow Harmonics

PRL107.252301 (2011)

- None-zero v_n(n>2)
- Disentanglement of a degeneracy among models
 - Initial Condition, Sheer Viscosity in Hydrodynamics
- Backgrounds in correlation studies

Jet-Quenching

- Suppression of particles compared to p+p collisions
 - Nuclear modification Factor $R_{AA} < 1$
 - Away-Side suppression of Correlations

 $R_{AA} = \frac{d^2 N^{AA}/dp_T d\eta}{N_{coll} d^2 N^{pp}/dp_T d\eta}$

Path Length Dependence of High p_T Correlations

2013/11/06

Double-Humps & Ridge of Interm. p_T Correlations

- Near-side long-range rapidity correlations (Ridge)
- Away-side double-humps of azimuthal correlations
- v₂ contribution subtracted
- Additional Effect to Parton Energy-Loss
 - Lost Energy-Redistribution
 - Boost of jet by medium expansion

2013/11/06

Conical Emission of Away-Side

PRL102.052302 (2009)

2013/11/06

Cherenkov Gluon Radiation

- Gluon Radiation from a superluminal parton
- Momentum dependence of gluon opening angle

$$\cos \theta_c = c/n(p)v_{part} \simeq 1/n(p)$$

v_{part}~ c at GeV/c scale

$$n(p)=p/p_0\;$$
 : Index of Reflection

PRL96.172302 (2006)

Mach Cone Shock Wave

 Shock Wave from a supersonic parton

$$\cos \theta_{Mach} = c_s / v_{part}$$

- p_T independence of doublehump position
 - v_{part}^{\sim} constant at GeV scale
 - c_s ~ constant at Au+Au 200 GeV

PRC73.011901(R) (2006)

Jet Deflection

- Boost by medium expansion
- Energy-momentum loss
- Hydro + Energy-Momentum Loss

PRL105.222301 (2010)

Jet Deflection

Hot-Spot Model

PLB712.226 (2012)

- Hot-Spot : domain of high parton density
- Hot-Spot + Hydrodynamic Expansion
- Double-humps without hard-scattered partons

Contributions of v_n (n>2) in correlations

- Double-hump & ridge of long-rapidity correlation explained
- Short-rapidity correlation with \boldsymbol{v}_n subtraction to discuss parton behavior

2013/11/06

Motivation of this Dissertation

- Focus on azimuthal two-particle correlations
- Provide robust experimental results after v_n subtraction
 - Centrality & p_T dependence, double-humps etc.
 - Revisit of previous models
- Diagnose correlation phenomena at intermediate-p_T with control of parton path length with respect to event-planes (Ψ_2, Ψ_3)
 - Parton-Energy Loss
 - Re-distribution of lost energy from partons
 - Possible boost of Jet by medium expansion

My Contributions

ANALYSYS

Data Set & Particle Selection

- PHENIX year 2007 Experiment
- Au+Au collisions at Vs_{NN} =200 GeV
 - Minimum Bias Trigger
 - 4.4 billion events
- Charged Hadron Selection
 - 2σ Matching Cut
 - Electron Veto
 - Energy/Momentum cut for High p_T particles
 - Background rejection
 - Pair cut of miss-reconstructed hadron pairs

PHENIX Detector - 2007 Experiment

- Trigger, collision vertex, centrality
 - Beam-Beam-Counter (BBC)
 - Zero-Degree-Calorimeter(ZDC)
- Event Plane

– BBC

- Reaction-Plane-Detector(RXN)
- Central Arm, $\Delta \phi = \pi |\eta| < 0.35$
 - Momentum, Tracking, Electron Veto
 - Drift Chamber (DC)
 - Pad Chamber(PC)
 - Electromagnetic Calorimeter(EMC)
 - Ring Image Cherenkov Detector(RICH)

Centrality

2013/11/06

Event Plane Calibration

Event Plane Resolution & v_n Measurements

EP Resolution

PRC58.1671

- Resolution +/- η $\sigma_n^{EP} = \langle \cos kn(\Psi_n^{EP\pm\eta} - \Psi_n) \rangle$ $= \sqrt{\langle \cos kn(\Psi_n^{EP(+\eta)} - \Psi_n^{EP(-\eta)}) \rangle}$ $= \frac{\pi}{8}\chi_n^2 \left[I_{(k-1)/2} \left(\frac{\chi_n^2}{4} \right) + I_{(k+1)/2} \left(\frac{\chi_n^2}{4} \right) \right]^2$
- Resolution +&- η

$$-\chi - \chi - \sqrt{2\chi}$$

$$\sigma_n^{EP} = \frac{\pi}{8} 2\chi_n^2 \left[I_{(k-1)/2} \left(\frac{2\chi_n^2}{4} \right) + I_{(k+1)/2} \left(\frac{2\chi_n^2}{4} \right) \right]^2$$

• v_n measurements

$$v_n = \frac{v_n^{obs}}{\sigma_n^{EP}} = \frac{\left\langle \cos n(\phi - \Psi_n^{EP}) \right\rangle}{\left\langle \cos n(\Psi_n^{EP} - \Psi_n) \right\rangle}$$

v_n Results

- Consistent results with previous measurements
 - Used for background subtraction

2013/11/06

Two Particle Correlations

• Pair distributions in real and mixed events

$$\Delta \phi = \phi^a - \phi^t, \Delta \eta = \eta^a - \eta^t$$

Flow Subtraction & Pair Yield per a Trigger (PTY)

- \circ $1.08 \begin{bmatrix} Au+Au \ \sqrt{s_{NN}} = 200 \text{ GeV}, 20-30\% \\ p_T^t \otimes p_T^a = 2-4 \otimes 1-2 \text{ GeV/c} \\ \circ : C_{\sim E} \end{bmatrix}$ Analytical Formula of Pure Flow \circ : C₂ Expr. 1.06 : Fit to Expr. C₂ $F(\Delta \phi) = 1 + \sum 2V_{\Delta n} \cos(n\Delta \phi)$ 1.04 — : Pure Flow (ZYAM) 1.02 $= 1 + \sum 2v_n^t v_n^a \cos\left(n\Delta\phi\right)$ 0.98 0.96 Flow subtractions 0.94 0.92 - Zero Yield At Minimum Assumption 2 3 $^{4}\Delta\phi$ $j(\Delta\phi) = C(\Delta\phi) - b_0 \left| 1 + \sum_{n=1}^{\infty} 2v_n^t v_n^a \cos\left(n\Delta\phi\right) \right|$ • Pair yield per a trigger
 - $\frac{1}{N^t} \frac{dN^{ta}}{d\Delta\phi} = \frac{1}{2\pi\varepsilon} \frac{N^{ta}}{N^t} j(\Delta\phi)$
- $\varepsilon: \underset{\text{associate particles}}{\text{Tracking efficiency of}}$

2013/11/06

Event-Plane Dependence

- Selecting trigger particle w.r.t. $\Psi_2 \& \Psi_3$
- Control of parton path length inside medium
- Sensitivity to each harmonic plane

Flow Contributions with respect to EP

- No analytical formula of pure flow w.r.t EP
- Run a Monte Carlo simulation
- Azimuthal distribution
 - Using Measured v_n

$$E\frac{d^{3}N}{dp^{3}} = \frac{d^{2}N}{2\pi dp_{T}d\eta} \left\{ 1 + \sum_{n=2,3,4} 2v_{n}\cos n(\phi - \Psi_{n}) \right\}$$

- Observed Event Plane Resolution
- Observed correlation between EP
 - $<4(\Psi_2 \Psi_4) >= v_4 \{\Psi_2\} / v_4 \{\Psi_4\}$
 - <6(Ψ₂-Ψ₃)>=0

Flow Contributions with respect to EP

- p_T^T : 2-4, p_T^a :1-2 GeV/c
- Good reconstruction of correlation shape by MC simulation for both $\Psi_{2,} \Psi_{3}$ dependence
- Except around $\Delta \phi = 0, \pi$ where affected by jet

Resolution Correction for Trigger Selection

- Fitting Method
 - Azimuthal anisotropy of correlations yield
 - Resolution correction in analogous to v_n measurements
- Iteration Method
 - Trigger smearing effect by measured resolution *S*
 - Correlation Yield A
 - Smeared Correlations B
 - Effective correction coefficient *C*
 - Iteration until convergence

2013/11/06

Systematic Uncertainties

- Flow v_n Measurements
 - Fluctuation within RXN EP
 - Rapidity dependence of EP : RXN-BBC difference
 - Matching cut of CNT Particles
- Two-Particle Correlations
 - Systematics from v_n
 - Matching cut of CNT Particles
- Event Plane Dependent Correlations
 - Unfolding Method : Fit & Iteration
 - Parameter in iteration method

Results & Discussion

Two-Particle Correlations

- Suppression of Away-Side in most central collisions
- Away-side shape in peripheral collisions
 - Single peak at high p_{T}
 - Double hump at intm. p_T
- p_{T} independence of double hump position below p_{τ} <4 GeV/c

(e)

2-4x2-4 GeV/c

0.08

0.06 0.04 0.02

0.035 0.03

0.025

0.015 0.01

2 3

Hardness of Correlation Yields

- Hardness increase with trigger and associate $p_{\rm T}$
- Different Physics depending on p_T
 2013/11/06 pre-Defense

Comp. w/ Model : Cherenkov Gluon Radiation

• Strong momentum dependence

Disfavored by p_T independence of experimental data

Comp. w/ Model : Jet-Deflection & Mach-Cone

PRL105.222301 (2010)

- Momentum Loss to obtain p_T independent Double-hump
 - Energy + Momentum Loss is most realistic
- Mach-Cone also shows p_T independence

Comp. w/ Model : Jet-Deflection & Hot-Spot

- Intermediate p_T : Both models consistent with data
- Hot-Spot disfavored by the double-hump at high- p_T
- Consistent with the behavior of p_T spectra

Ψ_2 dependence of PTY

- Mach-Cone disfavored
 - Double-hump must always appear in Mach-Cone
- In-plane trigger
 - Enhance in peripheral collisions: with thin medium
 - Parton Energy Loss
- Out-of-plane trigger
 - Enhance in central collisions: thick medium
 - Energy re-distribution & boost by collective expansion

2013/11/06

Ψ_3 dependence of PTY

- Similar but weaker trends as Ψ_2 dependence
- In-plane trigger
 - Enhance in peripheral collisions with thin medium
- Out-of-plane trigger
 - Possible enhance in central
 collisions with thick medium
- Weaker Ψ_3 dependence than Ψ_2

Ψ_2 dependence of PTY (Polar Coordinate)

- Yield correlates with geometry
- Enhance of In-plane yield with increase of centrality
 - Shortest average path length
- Enhance of Out-of-plane yield with decrease of centrality
 - Longest average path length

Ψ_3 dependence of PTY (Polar Coordinate)

- Enhance of In-plane yield with increase of centrality
 - Shortest average path length
- Possible enhance of Outof-plane yield with decrease of centrality

Azimuthal anisotropy of PTY : v_n^{PTY}

• Extraction of v_n^{PTY} by fitting

 Ψ_2 dependence

$$F(\phi^a - \Psi_2) = a\{1 + 2v_2^{PTY}\cos 2(\phi^a - \Psi_2) + 2v_4^{PTY}\cos 4(\phi^a - \Psi_2)\},\$$

 Ψ_3 dependence

$$F(\phi^a - \Psi_3) = a\{1 + 2v_3^{PTY}\cos 3(\phi^a - \Psi_3)\},\$$

2013/11/06

EP & Vn

- v_n^{PTY} is a part of v_n^{EP}
- v_n^{PTY} amplitude is one order larger than v_n^{EP}

 v_2^{PTY} & High- $p_T \pi^0 v_2$

- Models with parton energy-loss provide positive $\pi^0 v_2$
- Additional effects required to explain negative v₂

Path length dependence of PTY

- Angle from EP converted to Path-Length by Glauber Model
- Non-monotonic behavior
- Yields does not scale on a universal curve

2013/11/06

Path length dependence of PTY/N_{part}

- Approximately scaled on a curve
- Associate yields from QGP medium

Path length dependence of PTY/N_{coll}

- Also approximately scaled on a curve
- Associate yields from hard-scattering at initial collisions
- Coupling of jet with medium

Summary - I

- Two-Particle correlations were measured with subtraction of backgrounds from v_n(n=2,3,4)
- New experimental data disfavored theoretical models
 - Cherenkov Gluon Radiation
 - Mach-Cone Shock Wave
 - Hot-Spot Models
- Jet-Deflection model is qualitatively consistent with data

Summary - II

- Event-Plane dependent correlations shows two competing effects
 - Increase / decrease of correlation yield with increase of pathlength
- Anisotropy of correlation yield v_n^{PTY}
 - Additional Effect in addition to parton-energy loss
- Scale of Correlation Yield by N_{part} & N_{coll}
 - Jet-Medium Coupling
- Energy-Loss, Energy Re-distribution, and boost of jet by medium need to be considered in future theoretical models

BACK UP

Rapidity Selection in the Measurements

- Two-Particle Correlations at CNT
 - Without rapidity gap, where Jet contribution survives
- Flow Measurements
- CNT Particle & Forward Event Plane at RXN, BBC
- Jet contribution suppressed

2013/11/06

Tracking Efficiency

Solid: PRC69.034910 Black Open: Uncorrected:2.50 **Colord Open: Uncorrected :2** σ •0-10% [➡] 10-20%x10⁻² ★ 20-30%x10⁻² ▼ 30-40%x10⁻² • Efficiency correction by ratio + 40-50%x10 of uncorrected invariant yield over corrected ones .uncor10 10⁻¹³ **10**⁻¹⁵ 2 3 0 4 5 $p_{\tau} \, GeV/c$ **Fit Function** $F(p_T) = p_0 * \left(\frac{p_1}{p_1 + p_T}\right)$

EP Resolution in Monte Carlo

• Convert resolution to χ

$$\left\langle \cos\left[kn(\Psi_n^{obs} - \Psi_n^{real})\right] \right\rangle = \frac{\sqrt{\pi}}{2\sqrt{2}}\chi_n e^{-\chi_n^2/4} \left[I_{(k-1)/2}\left(\frac{\chi_n^2}{4}\right) + I_{(k+1)/2}\left(\frac{\chi_n^2}{4}\right) \right].$$

• Distribution between real and observed EP using χ

$$\frac{dN^{eve}}{d[kn(\Psi_n^{obs} - \Psi_n^{real})]} = \frac{1}{\pi} e^{-\chi_n^2/2} \left[1 + z\sqrt{\pi} [1 + \operatorname{erf}(z)] e^{z^2} \right]$$

2013/11/06

$\Psi_2 \mbox{-} \Psi_4$ correlation in Monte Carlo

- $\Psi_2 \Psi_4 \text{ correlation}$: $\langle \cos [4(\Psi_2 \Psi_4)] \rangle = v_4 \{\Psi_2\} / v_4 \{\Psi_4\}$
- Obtain χ & reconstruct distribution

$$\begin{aligned} &\langle \cos\left[4(\Psi_2 - \Psi_4)\right] \rangle = \frac{\sqrt{\pi}}{2\sqrt{2}} \chi_{42} e^{-\chi_{42}^2/4} \left[I_0\left(\frac{\chi_{42}^2}{4}\right) + I_1\left(\frac{\chi_{42}^2}{4}\right) \right] \\ &\frac{dN^{eve}}{d[kn(\Psi_n^{obs} - \Psi_n^{real})]} = \frac{1}{\pi} e^{-\chi_n^2/2} \left[1 + z\sqrt{\pi} [1 + \operatorname{erf}(z)] e^{z^2} \right] \end{aligned}$$

2013/11/06

Unfolding : Fitting Method

Ψ_2 dependent case

PRC.84.024904 (2011)

Fitting

$$\lambda + Y^{cor}(\phi_s, \Delta \phi) = \frac{\lambda + b_0 \left[1 + 2v_2^Y / \sigma \cos 2(\phi_s + \Delta \phi) + 2v_4^Y / \sigma_{42} \cos 4(\phi_s + \Delta \phi) \right]}{\lambda + b_0 \left[1 + 2v_2^Y \cos 2(\phi_s + \Delta \phi) + 2v_4^Y \cos 4(\phi_s + \Delta \phi) \right]} (\lambda + Y(\phi_s, \Delta \phi))$$

 Ψ_3 dependent case

$$\lambda + Y^{cor}(\phi_s, \Delta \phi) = \frac{\lambda + b_0 \left[1 + 2v_3^Y / \sigma_3 \cos 3(\phi_s + \Delta \phi)\right]}{\lambda + b_0 \left[1 + 2v_3^Y \cos 3(\phi_s + \Delta \phi)\right]} \left(\lambda + Y(\phi_s, \Delta \phi)\right)$$

Fitting

• Offset $\lambda = 1.0$ to avoid possible division. by zero

- Assuming correlation yield has anisotropy w.r.t. EP
- Correction by EP resolution

2013/11/06

Unfolding : Iteration

Smearing Effect

Smearing of measured correlations

 $\mathbf{B}(k) = \mathbf{SA}(k)$

- Correction factor $c_{ii} = A(i,k)/B(i,k)$ $c_{ij(i \neq j)} = 0$
- Corrected yield

$$\mathbf{A^{cor}}(k) = \mathbf{C}(k)\mathbf{A}(k)$$

Unfolding : Iteration

Iteration until conversion

2013/11/06

Zero Yield at Near-Side

- Correlation and Pure Flow is fitted at $\Delta \phi = 0$
- Double-hump is not so sensitive to flow subtraction

High p_T correlations

Intermediate p_T correlations

Ψ_2 dependence of PTY

63

Ψ_2 dependence of PTY (Polar)

2013/11/06

Ψ_3 dependence of PTY

65

Ψ_3 dependence of PTY (Polar)

2013/11/06

Glauber Model

- Woods-Saxon Distribution
 - Nucleon density distribution
- Collision range
- Number of nucleons participated in a collision
- Number of binary nucleons collisions in a collision

 $(\frac{\sigma_{nn}}{\pi}, \sigma_{nn} = 42mb)$ dNcoll Spectator Participants After Collision Before Collision

Path-Length based on Glauber MC

• Path-Length : distance from center to surface as a function of angle form the event-planes

Eccentricity by Glauber Model

Path length dependence of PTY

• Near & Away-Side of both Ψ_2 , Ψ_3 dependent correlations do not form a universal curve

Boost by v₄

- Boost by v_4 to out-of-plane direction in central collisions
- Boost by v₂ to in-plane direction in peripheral collisions