Measurements of higher-order flow harmonics and two particle correlations in relativistic heavy ion collisions at RHIC-PHENIX

(RHIC-PHENIX実験における相対論的重イオン衝突 における高次方位角異方性及び二粒子相関の測定)

2012/12/21 TACセミナー

数理物質科学研究科

轟木 貴人

Outline

Introduction

- o QGP
- Higher-Order Flow Harmonics
- o Jet Quenching
- Two Particle Correlations
- Experiment
- o RHIC
- o PHENIX
- Analysis
- o Event Plane (EP)
- Two Particle Correlations
- EP Dependent Correlations
- Unfolding of EP Resolution

Results & Discussions

- \circ v_n subtracted correlations
- Fourier Decomposition
- EP Dependent Correlations
- Yield as a function of trigger angle
- Gravity Position as a function of trigger angle

Introduction

Quark Gluon Plasma(QGP)

- A state of matter where Quarks & Gluons are deconfined from hadrons at high energy-density(ε)/ temperature(T)
- Predicted transition ε & T by Lattice-QCD
- T~170 [MeV]
- $\circ \epsilon \sim 1.0 \text{ GeV/fm}^3$
- Relativistic Heavy Ion Collision at RHIC
- $\circ \epsilon \sim 5-15 \text{ GeV/fm}^3$

Collective & Penetrating Probes

Collective bulk expansion by soft scattering

Jets by back-to-back hard scattering and parton fragmentation

Parton energy loss and possible jetmedium coupling

- Collective probes
 Flow Harmonics, HBT ...
- Penetrating probes
- \circ Nuclear Modification Factor(R_{AA}), two particle correlations at high p_T ...

2012 Dec. 21st

TAC seminar

Higher-Order Flow Harmonics

Fluctuating Geometry

• Expansion w.r.t. each Ψ_n $E \frac{d^3 N}{dp^3} = \frac{d^2 N}{2\pi dp_T d\eta} \begin{cases} 1 + \sum 2v'_n \cos n(\phi - \Psi_2) \\ 1 + \sum 2v_n \cos n(\phi - \Psi_n) \end{cases}$ $v_n = < \cos n(\phi - \Psi_n) >$ ϕ : azimuthal angle of emitted particles

 $\Psi:$ azimuthal angle of event plane

TAC seminar

2012 Dec. 21st

- v_n break the degeneracy among models
 & give more constraints than v₂
- PID v_n shows mass ordering at low p_T and coalescence like behavior at intermediate p_T

2012 Dec. 21st

Suppression of Invariant Yield

- Hadron suppression in Au+Au
- Stronger in central than peripheral collisions
- $_{\odot}\,$ Jet Quenching by Medium at high $p_{T}\,$

2012 Dec. 21st

 $=\frac{d^2N/dp_Td\eta}{T_{AB}d^2\sigma^{pp}/dp_Td\eta}$

 $T_{AB} = \langle N_{col} \rangle / \sigma_{inel}^{pp}$

 R_{AA}

Two Particle Correlations

- Can deal with azimuthal differential information
- Suppression of high p_T correlation yield compared to p+p
 Dominated by away side suppression

± a

Characteristic Structures

- Ridge & Shoulder at low ~ intermediate p_T correlations
- Different physics in QGP from high p_T correlations? • Contributions of v_2 and $v_4(\Psi_2)$ are subtracted • Contributions from $v_n \sim b_0 2v_n^{trig} v_n^{asso} \cos n\Delta\phi$
- Need to consider v_n effects to obtain real correlation shape

Motivations

Discuss the behavior of low-intermediate p_T partons in QGP medium by measuring two particle correlations with the subtraction of contributions from v_n in \sqrt{s_{NN}} Au+Au 200GeV collisions

- Definitive correlation shape after v_n subtractions
- Trigger angle (Path length) dependence of correlations w.r.t. 2, 3
- Testing sensitivity to each harmonic event plane

My Activity * Categories of Activity

***Oral (intern.) *Oral (Domestic) *Experimental *Analysis *Service work**

M1,2:2008~2009	D1 (RIKEN JRA) : 2010
DNP-JPS Joint Meeting PHENIX Run9 PHENIX Run10	Heavy Ion Pub preliminary request Au+Au ridge analysis
D2 (RIKEN JRA) : 2011	D3 (RIKEN JRA) : 2012 ~ Present
JPS Fall JPS WPCF2011 PHENIX Run12	5 Spring HIC•HIP Hard Probes2012 Quark Matter2012 Nagoya-Mini Workhop2012
preliminary request Au+Au vn-correlation Au+Au PID vn	est preliminary request Au+Au correlations w.r.t. EP vn EP calibration

Experiment

RHIC

	Year	Species	√s [GeV]	∫Ldt	N _{tot} (sampled)	Data Size
Run1	2000	Au - Au	130	1 ub ⁻¹	10 M	3 TB
Run2	2001/02	Au - Au	200	24 ub⁻¹	170 M	10 TB
		Au - Au	19		< 1 M	
		р-р	200	0.15 pb ⁻¹	3.7 B	20 TB
Run3	2002/03	d - Au	200	2.74 nb ⁻¹	5.5 B	46 TB
		р-р	200	0.35 pb ⁻¹	6.6 B	35 TB
Run4	2003/04	Au - Au	200	241 ub ⁻¹	1.5 B	270 TB
		Au - Au	62.4	9 ub ⁻	58 M	10 TB
Run5	2005	Cu - Cu	200	3 nb⁻¹	8.6 B	173 TB
		Cu - Cu	62.4	0.19 nb ⁻¹	0.4 B	48 TB
		Cu - Cu	22.4	2.7 ub ⁻¹	9 M	1 TB
		р-р	200	3.8 pb⁻¹	85 B	262 TB
Run-6	2006	р-р	200	10.7 pb ⁻¹	233 B	310 TB
		р-р	62.4	0.1 pb ⁻¹	28 B	25 TB
Run-7	2007	Au - Au	200	813 ub ⁻¹	5.1 B	650 TB
Run-8	2007/08	d - Au	200	80 nb ⁻¹	160 B	437 TB
		p - p	200	5.2 pb ⁻¹	115 B	118 TB
		Au - Au	9.2		few k	

- Accelerators
- o Tandem van de Graaff
- Linear Accelerator
- Booster Synchrotron
- Alternating Gradient Synchrotron
- o Relativistic Heavy Ion Collider

- Experiments
 - PHENIX
 - o STAR
 - o PHOBOS
 - o BRAHMS

PHENIX Experiment

- Global Detectors(Trigger¹, centrality², vertex position³, event plane⁴)
- Beam Beam Counter(BBC)^{1,2,3,4} |h|=3~4
- Zero Degree Counter(ZDC)¹ |h|>5
- Reaction Plane Detector(RXN)⁴ |h|=1-2.8
- Tracking⁵ & Momentum⁶ at central arm |h|<0.35
- Drift Chamber (DC)^{5,6}
- Pad Chamber (PC)⁵
- ElectroMagnetic Calorimeter(EMC)⁵

Analysis

Centrality Calibration

• The centrality is determined using the BBC charge sum.

Before collision

• Defined in percentile scale to have each bin contains same number of events.

spectators

TAC seminar

After collision

spectators

participants

Event Plane (EP) Calibration

TAC seminar

EP Resolution & Flow

Two Particle Correlations

Correlation function

Ratio of two-particle probability distribution over single one

Ratio of real pair(w/ physics corre.) over mixed pair(wo/ physics corre.)

$j(\Delta\phi) = C(\Delta\phi) - b_0 \left| 1 + \sum_{n=1}^{\infty} 2v_n^t v_n^a \cos\left(n\Delta\phi\right) \right|$

22

Flow subtractions Zero Yield at Minimum Assumption

Pure flow correlations

- Data

Flow

Flow

1

0

20-30%

1.05

C(Δφ)

0.95

0.9

0.85

•

Flow Contributions

Pair Yield per a Trigger

• Pair Yield per a trigger

$$\frac{1}{N^t} \frac{dN^{ta}}{d\Delta\phi} = \frac{1}{2\pi\varepsilon} \frac{N^{ta}}{N^t} j(\Delta\phi)$$

 \circ Scaled to single particle cross section at associate p_{T}

$$\varepsilon = \frac{\sigma^{uncor}}{\sigma^{cor}}$$

EP Dependent Correlations

- Selecting trigger particle w.r.t. $\Psi_2 \& \Psi_3$
- Controlling path length parton propagates
- Testing sensitivity to each harmonic plane
- $_{\odot}\,$ correlation shape, yields in near/away etc.

- Left/Right trigger selection relative to event plane results in non-uniform path length at away-side
- Modification expected in away-side as Left/Right asymmetry

2012 Dec. 21st

- Left/Right Asymmetry observed in Ψ₂ & Ψ₃
 Consistent within systematics in Ψ₃
- Have sensitivity to event plane, but smeared by limited event plane resolution

2012 Dec. 21st

TAC seminar

• Unfolding using Fourier Series

- Assuming effect by jet depends on trigger angle relative to EP and parameterized by Fourier series
- Correction by EP resolution
- Add offset λ =1.0 to avoid possible division by zero

Results & Discussion

v_n as function of **p**_T

- $v_2 \& v_3$ extended up to $p_T=5$ GeV/c
- v₄ has larger systematics due to RXN-BBC difference

v_n subtracted to correlations

Fourier Decomposition

- Fourier decomposition of v_n subtracted correlations
- o 3rd harmonics survives
- Balance between 3rd & 4th determines the away side

EP Dependent Correlations

Au+Au 200GeV, 20-30%, 2-4 \otimes 1-2 GeV, v₂v₃v₄(Ψ_4) subtracted with <cos4(Ψ_2 - Ψ_4)>=v₄(Ψ_2)/v₄(Ψ_4) by ZYAM

- None-trivial shape at intermediate plane of Ψ_2
- $_{\odot}\,$ Comparable yield in in-plane & out-of-plane of Ψ_{2}
- None clear Ψ_3 dependence

Gravity Position

- In/Out-of plane
 correlations move to In/
 Out-of plane direction
 in all centrality
- Inconsistent with path length dependence at in high p_T correlations

Gravity Position

- Every triggered
 correlations move to
 positive azimuth
 direction in all
 centrality except 0-10%
- Inconsistent with path length dependence in high p_T correlations

Conclusion & Outlook

- Treatment of v_4 is crucial for away side structure of intermediate p_T
- Double hump (3rd harmonics) survives in correlations at centrality 40-50%
- Simple path length dependence of parton energy loss is not validated in intermediate p_T correlations
- Yields/Gravity position of correlations with trigger selection w.r.t. EP don't necessarily move to shorter path length side
- Need to consider other model such as re-distribution of deposited energy to bulk etc.
- Different dependence on $\Psi_2 \& \Psi_3$
- Effects from almond shape vs fluctuation?
- Running Simulation Package
- AMPT, q-PYTHIA, HYJING etc.

Backup Slides

Spectra of Correlation Yield

Au+Au 200GeV, Near Side:IΔφI<Iπ/4I, Only Stat. Error

Spectra of Correlation Yield

Path Length Dependence

Path Length Dependence

58