Measurement Of Direct Photon Azimuthal Anisotropy In Au+Au √s_{NN}=200GeV Collisions at RHIC-PHENIX experiment

Sanshiro Mizuno for the PHENIX collaboration University of Tsukuba, RIKEN

mail to : s1230082@u.tsukuba.ac.jp

Photon analysis in Heavy Ion Collision

Photon analysis

✓ Advantage :

Penetrating the medium Color-less and charge-less Access to the initial stages of collision

Hadron	: after freeze-out
Photon	: any stages

Production mechanism Initial hard scattering parton - medium interaction Jet fragmentation Radiation from QGP and Hadron Gas hadron decay

Disadvantage :
 Photons from different stages
 superimposed

What is direct photon ?

Direct photons are all photons except for those originating from hadron decays (e.g. $\pi^0 - >\gamma + \gamma$). Photon sources should be identified. (p_T, angular dependence)

Direct photon p_T spectra

Photons from each source have different p_T distribution pattern. Photons radiated from QGP and HG are dominant in low p_T and fraction of photons from other sources increases with increasing p_T .

photon

R_{AA}=1 : not modified

-> Emitted from initial hard scattering is dominant.

R_{AA}<<1 : There are other photon sources which is not in p+p collisions -> radiated from hot medium?? photon vn(M.Sanshiro) 5

Radiated from very hot medium

$$a(1+p_T^2/b)^c$$

The p_T spectra from p+p data is fitted
and extrapolated below 2 GeV/c.

$$Ae^{-p_T/T_{eff}}$$

The excess of p_T spectra are fitted and effective temperature is extracted.

It is about 240 MeV. $(T_{FO} \approx 100 MeV)$ Photons are emitted from very hot medium at early time of collisions.

Azimuthal anisotropy (Elliptic flow)

photon vn(M.Sanshiro)

Photon emitting angle dependence w.r.t. R.P.

Angular dependence of emission

Initial hard scattering : $v_2 \approx 0$ Medium induced : $v_2 \leq 0$ Jet fragmentation : $v_2 \geq 0$ Radiation from medium : $v_2 > 0$

Photon v_2 measurement is a powerful probe to constrain the photon source.

Very large direct photon v₂

P.R.L. 109, 122302(2012)

It is consistent with hard photons produced in the initial hard collision at high p_T . ($R_{AA} \approx 1$)

The strength of photon v_2 at low p_T is comparable to that of hadron v_2 .

Direct photon puzzle

Elliptic flow:

It is needed enough time to get large collective flow.

Hadrons are emitted from QGP at freeze-out, when it is late state. Photons from QGP and HG are dominant at low p_T and they have large v_2 .

-> Photons are emitted at late state??

p_T spectra:

radiation from QGP and HG are dominant at low p_T emitted from very hot medium ($T_{eff} \approx 240$ MeV) at early time

There is discrepancy.

There is no model to explain simultaneously the both observable.

Third order azimuthal anisotropy (v_3)

 v_3 is originated from fluctuation of participants.

The higher order is expected to be more sensitive to initial geometry and η/s of QGP.

 Ψ_3 and Ψ_2 (R.P.) should be independent.

Why v₃ is measuremed?

Strong photon v_2 has not yet been understood.

Radial flow effect :

Effective temperature is affected by radial flow.

v₂>0:v₃>0

Strong magnetic field :

Direction of magnetic field and $\Psi_2(R.P.)$ are related. $v_2>0: v_3\approx 0$

 v_3 measurement could provide additional constrain photon production mechanism.

Azimuthal anisotropy measurement

Central Magnet

Reaction Plane detector (RxNP) is used for measuring Event Plane.

Photons and π^0 are detected by EMCal in CNT.

$$v_n = <\cos\{n(\phi - \Psi_n)\} >$$

photon vn(M.Sanshiro)

Side View

Analysis flow

1. π^0 , $\gamma^{inc.}$ **v**_n measurement

2. $\gamma^{\text{dec.}} \mathbf{v}_n$ estimation from $\pi^0 \mathbf{v}_n$ Meson spectra are assumed by m_T scaling. Meson v_n are assumed by the number of constituent quark (NCQ) scaling.

3. $\gamma^{\text{dir.}} \mathbf{v}_{n}$ calculation R_{γ} is measured by external photon conversion method.

$\pi^{\rm 0}$ and inclusive photon $v_{\rm n}$ resuluts

 π^0 and inclusive photon v₂ and v₃ are measured. Mesons v_n are estimated by the NCQ scaling from π^0 v_n results.

Hadronic decay photon

 p_T spectra : m_T scaling

meson p_T spectra

5

5

meson V_2

10¹¹

10⁹

10⁷

10⁵

10³

10

10⁻¹

0.2

0.15

0.1

0.05

0 0

0

 v_n : quark number scaling

¹⁰ p_(GeV/c)¹⁵

¹⁰ p_(GeV/c)¹⁵

Inclusive and decay photon v_n comparison

Direct photon v_n are extracted from the deviation between inclusive and decay photon via below function.

The result of direct photon v₃

The magnitude of $\gamma^{\text{dir.}} v_3$ is similar to π^0 , a similar trend as a seen in case of v_2 .

Photon azimuthal anisotropies may be affected by expansion of QGP.

Centrality dependence of direct photon v₃

 η range of RxN(I+O) is from 1.0 to 2.8.

Non-zero, positive v_3 is observed in all centrality bins.

No strong centrality dependence: similar tendency as for charged hadrons (P.R.L. 107, 252301 (2011)) and π^0 .

$\gamma^{\text{dir.}}$ and $\pi^0 v_3$ show similar trend

The centrality (in)dependence of $\gamma^{\text{dir.}} v_3$ is also observed for $\pi^0 v_3$.

Summary

Soft photons have provided many interesting physics.

There is the direct photon puzzle, and it has not yet been understood.

Direct photon v_3 is measured in several centrality bins. It is observed that

 $\gamma^{\text{dir.}}$ v₃ is non-zero and positive

the strength of $\gamma^{dir.}$ v₃ is comparable to hadron v₃

They are similar trend to $\gamma^{dir.}$ v₂.

don't have strong centrality dependence

It is similar tendency to hadron v_3 .

The results of direct photon v_3 could provide important keys for understanding photon production mechanism.

Event Plane correlation

P.R.L. 107, 252301 (2011)

 Ψ_2 and Ψ_3 are uncorrelated.

Comparison of $\gamma^{\text{dir.}}$ v_n with the two methods

The calorimeter and conversion photon measurements are consistent within systematic uncertainty.

Photons by external conversion

Published

Real photons in EMCal : 1 - 20 GeV/c large errors at low p_T (resolution, contamination)
Virtual photons from e⁺e⁻ : 1 - 4 GeV/c

New method

Real photons are measured by e^+e^- pair from external photon conversion at the HBD readout plane. \checkmark less hadron contamination \checkmark good momentum resolution p_T range : 0.4 ~ 5GeV/c Extended to lower p_T low statistics

External conversion photon

- 1) real photon converts to e^+e^- in HBD backplane
- 2) default assumption: track come from the vertex
- 3) momentum of the conversion tracks will be mis-measured (see black tracks)
- 4) apparent pair-mass (about 12MeV) will be measured for phtons
- 5) assume the same tracks originate in the HBD backplane
- 6) re-calculate momentum and pair mass with this "alternate tracking model"
- 7) for true converted photons $\rm M_{\rm atm}$ will be around zero

Real track estimated track

Comparison $\gamma^{dir.}$ v₃

RxN(I+O) : 1.0 < |η| < 2.8 RxN(In)+MPC : 1.5 < |η| < 3.8

The magnitude of v_3 is comparable.

Input decay photon : p_T spectra

 π^{\pm} and $\pi^{0} p_{T}$ spectra are fitted and its function is used for estimating the other meson p_{T} spectra by m_{T} scaling. They are used as a input.

Input decay photon : p_T spectra

The ratio of Each meson p_T spectra to $\pi^0 p_T$ spectra is known to be constant at high p_T .

The table of each meson spectra ratio to π^0	
η/π^0	0.45 ± 0.060
ω/π^0	0.83 ± 0.120
$ ho/\pi^0$	1.00 ± 0.300
$\eta^{'}/\pi^{0}$	0.25 ± 0.075

Yield : data vs theories

Linnyk et al.: PHSD transport model; Linnyk, Cassing, Bratkovskaya, P.R.C 89, 034908(2014)

vHees et al.: Fireball model; van Hees, Gale, Rapp; P.R.C 84, 054906(2011)

Shen et al.: Ohio hydro for two different initial conditions; Shen, Heinz, Paquet, Gale; P.R.C 84, 064903(2014)

The yield itself is still not perfectly described.

Comparison $\gamma^{dir.}$ v₂ with theoretical calculations

van Hees et al: P.R.C 84, 054906 (2011) Linnyk et al.: PHSD model, private communication

Identified charged particle v_n

It is observed that

all harmonics have mass ordering there are meson and baryon splitting

The number of constituent quark scaling (NCQ scale)

All particles are scaled by modified NCQ scaling.

(a) :
$$v_2(KE_T)/n_q$$

(b) : $v_n^{1/n}$ scaling
(a)+(b) : $v_n(KE_T)/n_q^{n/2}$

 $\gamma^{\text{dir.}}$ v₂ in high E_T region are consistent with 0 within systematic uncertainty, while π^0 has positive v₂.

photon v_n measurement by ALICE

It is also observed that $\gamma^{\text{dir.}} v_2$ is positive in low p_T at LHC-ALICE. v_3 measurement is ongoing.