# Elliptic flow for multistrange hadrons as penetrating probes at RHIC

*Hiroshi Masui / University of Tsukuba High Energy Strong Interactions: A school for Young Asian Scientists, Wuhan, Sep. 22-26, 2014* 



#### Outline

#### • Introductions

- Elliptic flow
- Why multi-strange hadrons ?
- Latest STAR results in Au + Au collisions at  $\sqrt{s_{NN}}$  = 200 GeV
  - Number of constituent quark (NCQ) scaling
- + Violation of mass ordering between  $\phi$  meson and proton
- Hybrid hydrodynamical model calculations
- Summary

I would like to thank Shiori Takeuchi and Tetsufumi Hirano for allowing me to present their recent hydrodynamical model calculations

# Azimuthal anisotropy

$$\frac{dN}{d\phi} \sim 1 + 2v_1 \cos(\phi - \Psi_1) + 2v_2 \cos(2[\phi - \Psi_2]) + 2v_3 \cos(3[\phi - \Psi_3]) + \cdots,$$
$$v_2 = \langle \cos(2[\phi - \Psi_2]) \rangle$$

#### • Azimuthal anisotropy

- Fourier expansion of azimuthal distribution with respect to the reaction plane
- Fluctuation of constituents (nucleons or partons) → participant plane
  - Reaction plane ≠ participant plane
- Elliptic flow v<sub>2</sub>
  - Final state momentum anisotropy, 2nd harmonic coefficient
- not necessary to describe collective hydrodynamic flow
- 2 particle correlation is the most popular method  $V_2^r$

$$v_{2}^{\text{obs}} = \left\langle \cos\left(2\phi - 2\phi_{r}\right) \right\rangle = v_{2} \cdot \left\langle \cos\left(2\phi_{r} - 2\Psi_{2}\right) \right\rangle$$

$$v_{2}^{\text{obs}} = \left\langle \cos\left(2\phi - 2\Phi_{2}\right) \right\rangle = v_{2} \cdot \left\langle \cos\left(2\Phi_{2} - 2\Psi_{2}\right) \right\rangle$$
event plane resolution

### Mass ordering of v<sub>2</sub> - radial flow

STAR: Phys. Rev. C72, 014904 (2005)



- Radial flow pushes heavier hadrons to higher pT
- Inverse slope  $(T_{eff})$  of  $p_T$  spectra depends on mass linearly
- Due to the geometry deformation, hadrons around participant plane are pushed more than those around out-of-plane
- $v_2$  decreases at low  $p_T$ , and the effect is stronger for heavier hadrons
- ➡ Mass ordering of v<sub>2</sub>

#### Why multi-strange hadrons ?



- Blast-wave mode fit for  $p_T$  spectra support early freeze-out of multi-strange hadrons:  $T_{fo} \sim T_{ch}$ 
  - probe to collectivity in early partonic stage of heavy ion collisions
- Statistics is limited in previous data to study the number of constituent quark (NCQ) scaling

#### Motivations

- v<sub>2</sub> for multi-strange hadrons is a good probe to partonic collectivity
  - Multi-strange hadrons freeze-out earlier than others
  - ➡ less hadronic rescattering (less radial flow effect)
  - penetrating probe to study partonic stage
  - Powerful tool to study NCQ scaling of v<sub>2</sub>
- Statistics is limited in previous data set
  - We have huge amount of data in year 2010 & 2011
  - In addition, particle identification will be improved with fully installed MRPC-TOF detector

### STAR experiment

TOF



VPD

BBC

• Full azimuth,  $|\eta| < 1$ 

TPC

Excellent particle identification
 TPC + TOF

# **Particle identifications**



- Topological reconstruction of  $\Xi$  and  $\Omega$  weak decay
- reduce combinatorial backgrounds
- Calculate invariant mass
- Combinatorial background is estimated by rotational background from the same event

# Centrality & p<sub>T</sub> dependence

(40%-80%)

φ (10%-40%) φ (0%-5%)

Elliptic flow parameter v<sub>2</sub>

o (0%-80%

Transverse momentum p\_ (GeV/c)



- Clear centrality dependence initial geometry
- Similar p<sub>T</sub> dependence with light hadrons
  - Event plane method with  $\Delta \eta$ =0.1 gap
  - Improve statistical error φ for meson
    - compare with left figure
  - $\sim$  2 centrality bins for  $\Omega$  baryon

## Transverse kinetic energy scaling



- Mass ordering is almost vanished in terms of transverse kinetic energy m<sub>T</sub> - m<sub>0</sub>
- Clear baryon and meson splitting above 1-2 GeV/c<sup>2</sup>
- Multi-strange hadrons seem to be smaller than other hadrons in 30-80%

# NCQ scaling for multi-strange hadrons

*STAR, QM2012* 



- Measure deviation relative to K<sup>0</sup>s
- deviation at 30-80% is larger than 0-30% ?

# Mass ordering violation, prediction



FIG. 9. (Color online) Transverse-momentum dependence of the elliptic flow parameters for pions (dotted blue), protons (dashed green), and  $\phi$  mesons (solid red), for Au+Au collisions at b = 7.2 fm. (a) Before hadronic rescattering. (b) After hadronic rescattering. (c) Ideal hydrodynamics with  $T_{\rm th} = 100$  MeV. The results for pions and protons are the same as shown in Fig. 5.

#### • Prediction: $v_2(\phi) > v_2(p)$ at low $p_T$

- Due to less hadronic rescattering on  $\phi$  meson
- based on ideal hydrodynamical model + JAM hadronic cascade, single shot hydro (no initial fluctuations), ideal gas equation of state

# $v_2$ at low $p_T$

0.6 L

0.5

p<sub>T</sub> (GeV/c)

**₩** 0-30%

30-80%

1.5

STAR, QM2012

13/18



- The effect is stronger in central collisions
- Consistent with the scenario predicted in hydro. + hadron cascade model
- Systematic & quantitative comparison is necessary

#### **Recent update of hydro. model**<sup>T</sup>



- Integrated dynamical model hydro. + hadron cascade
  - Initial geometry fluctuation by MC Glauber model
  - Lattice equation of state
- Spectra are reproduced well at low p<sub>T</sub>



 $v_2(p_{\rm T})\phi$ Λ





- Compared with previous published STAR data
- Reasonable agreement with the data
- Some deviations at peripheral collisions
- due to the difference between event plane method (data) and reaction plane method (model)



|y| < 1.0, minimum bias collision

|y| < 1.0, minimum bias collision

- Less rescattering effect on multi-strange hadrons
- Mean p<sub>T</sub> for multi-strange hadrons deviate from m<sub>T</sub> scaling
- v<sub>2</sub> almost unchanged between fluid and final stages



- Compare  $v_2$  below ~1 GeV/c in pT
- $v_2(\pi) > v_2(p) \ge v_2(\phi)$  without rescattering
- $v_2(\pi) > v_2(\phi) > v_2(p)$  with rescattering
- Confirmed violation of mass ordering
  - ~20% effect around 0.5 GeV/c in minimum bias events

 $|\eta| < 1.0$ , minimum bias collision

### Summary

- Multi-strange hadrons can be used as penetrating probes to understand medium properties in heavy ion collisions
- We have confirmed NCQ scaling for multi-strange hadrons with high precision data set
- partonic collectivity for light quark sectors (u, d, s)
- Violation of mass ordering has been predicted, and observed by the comparison of  $\varphi$  meson and proton  $v_2$ 
  - The effect is stronger in central collisions
- Recent hybrid hydrodynamical model provides realistic (initial state fluctuations + lattice EoS) calculation
  - which will allow us to make quantitative and systematic comparison with the data