Measurement of v₂ in p+Pb collisions and d+Au collisions

Hiroki Yamamoto University of Tsukuba

Outline

- * Introduction
 - * Azimuthal anisotropy
- * Analysis
 - * Analysis method(E.P., 2P.C., reference fit)
- * Result
 - * v₂(p_T) centrality dependence in p+Pb collisions
 - * v₂ p_T dependence in p+Pb collisions
 - v₂ p_T dependence in d+Au collisions
- * Summery

Introduction

Azimuthal anisotropy (Elliptic flow)

* Azimuthal distribution for emitted particles $_{2}$ – $v_{2} = 0.1$ $\frac{dN}{d(\phi - \Psi_n)} \propto 1 + 2\sum v_n \cos\{n(\phi - \Psi_n)\}$ $2v_2$ $v_n = \langle \cos\{n(\phi - \Psi_n)\} \rangle$ 0.5 Strength of azimuthal anisotropy ϕ - Ψ (rad) $v_2 = \langle \cos\{2(\phi - \Psi_2)\}\rangle = \langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \rangle \frac{|\text{ellipticity of charged particle}|}{|\text{w.r.t. event plane}|}$

Why Elliptic flow ?

- * Initial geometry overlap (eccentricity, ε) \Rightarrow Final momentum anisotropy (elliptic flow, v_2)
- Sensitive probe for studying properties of the hot dense matter made by heavy ion collisions

CiRfSE workshop

2015/03/13

 Whether or not QGP is created in small colliding system like p+Pb collisions and d+Au collisions
 →Whether or not elliptic flow can be observed Analysis

- 1. Event plane method
- 2. Two particle correlation method
- 3. Reference fit method

Analysis method (Event plane method)

* Event plane

* EP is a direction that most particle emitted after freeze-out

$$\Psi_{n} = \frac{1}{n} \tan^{-1} \left(\frac{\sum_{i} w_{i} \cos(n\phi_{i}) / \sum_{i} w_{i}}{\sum_{i} w_{i} \sin(n\phi_{i}) / \sum_{i} w_{i}} \right) \qquad \sigma_{2}^{v_{2}} \text{ resolution}$$

$$* \text{ Measurement of event plane resolution via} \qquad \sigma_{2}^{v_{2}} \left(\frac{\nabla_{2} \cos(2\phi + Au \text{ collision}}{\partial \phi_{1} - \phi_{2}} \right) \\ \sigma_{2}^{A} = \sqrt{\frac{\sigma_{2}^{A} \sigma_{2}^{B} * \sigma_{2}^{A} \sigma_{2}^{C}}{\sigma_{2}^{B} \sigma_{2}^{C}}} \qquad \nabla_{2}^{obs} \\ * \text{ Calculation of v2 } v_{2}^{true} = \underbrace{\left(\cos\{2(\phi - \Psi_{2})\}\right)}_{\sigma_{2}} \sigma_{2}^{B} \left(\cos(2\phi - \Psi_{2})\right)} \\ \varepsilon_{2} \left(\cos(2\phi - \Psi_{2})\right) \\ \varepsilon_{2} \left(\cos(2\phi - \Psi_{2})\right) \\ \sigma_{2} \left(\cos(2\phi - \Psi_{2})\right) \\ \sigma_{3} \left(\cos(2\phi - \Psi_{2})\right) \\ \varepsilon_{3} \left(\cos(2\phi - \Psi_{2}\right) \\ \varepsilon_{3} \left(\cos(2\phi - \Psi_{2}\right)\right) \\ \varepsilon_{3} \left(\cos(2\phi - \Psi$$

Analysis method (2 particle method)

 $C(\Delta \phi)$

1.06

1.04

0.98 0.96 0.94 200GeV d+Au collisions

CNT-MPC South

$$\begin{split} C(\Delta\phi) &\equiv \frac{Y_{real}(\Delta\phi)}{Y_{mixed}(\Delta\phi)} \frac{\int Y_{mix}(\Delta\phi) d\Delta\phi}{\int Y_{real}(\Delta\phi) d\Delta\phi} \\ \Delta\phi &= \phi^{tri} - \phi^{ass} \end{split}$$

* Fitting into the following function $C'(\Delta\phi) = 1 + 2c_1 cos(\Delta\phi) + 2c_2 cos(2\Delta\phi)$ $c_2 = c_2^A c_2^B$ * Calculation c₂ via 3 sub event method $c_2^A = \sqrt{\frac{c_2^A c_2^B * c_2^A c_2^C}{c_2^B c_2^C}}$

Analysis method (Reference fit method)

Fitting 2 Extraction of c_2 parameters w.r.t. reference function

 $C'(\Delta\phi) = 1 + 2c_1 \cos(\Delta\phi) + 2c_2 \cos(2\Delta\phi)$

Extracted c₂ parameter is less affected by jet, and are expected to reflect the hydrodynamic collectivity although the signal includes the jetmodification

Result

v₂(p_T) Centrality dependence in p+Pb collisions

Event plane

Event plane : VZERO Aside(Pb-going side) p+Pb 5.02[TeV]

- * In peripheral,
 - v_2 becomes larger with p_T

* In central,

12

v₂ becomes larger up to p_T=3[GeV/c], after that, v₂ becomes smaller

2015/03/13

CiRfSE workshop

2015/03/13

v₂ p_T dependence in d+Au collisions

Summery

- * v_2 was measured in p+Pb collisions and in d+Au collisions.
 - In p+Pb collisions
 - In central event, v₂ becomes larger up to p_T=3, after that v₂ becomes smaller
 - In low p_T, corrected v₂ is consistent more than raw v₂
 - * In d+Au collisions
 - * v_2^{RXNP} is larger than v_2^{BBC} and v_2^{MPC}
 - * v_2^{RXNP} via reference fit method is consistent with v_2^{BBC} and v_2^{MPC}

 \rightarrow v₂ subtracted jet contribution has finite value

Data set

- * ALICE 5.02TeV p+Pb collisions *

 - * p_T[GeV/c]: 0~0.5,0.5~1.0,1.0~2.0,2.0~4. 0,4.0~10.0
 - * Detector : TPC,VZERO
 - * Analysis method : E.P.

PHENIX 200GeV d+Au collisions

* p_T[GeV/c]: 0.2~0.5,0.5~1.0,1.0~2.0,2.0~5 .0

- Detector : CNT,BBC,MPC,RXNP,SMD
- * Analysis method : E.P,2P.C.,reference fit

Azimuthal anisotropy (Elliptic flow)

* Azimuthal distribution of charged particle

$$\frac{dN}{d(\phi - \Psi_n)} \propto 1 + 2 \sum v_n \cos\{n(\phi - \Psi_n)\} \qquad \begin{array}{c} \text{ellipticity of charged particle} \\ \text{w.r.t. event plane} \end{array}$$

$$v_n = \left\langle \cos\{n(\phi - \Psi_n)\}\right\rangle \\ \text{L} \qquad \begin{array}{c} \text{Strength of azimuthal anisotropy} \end{array} \quad v_2 = \left\langle \cos\{2(\phi - \Psi_2)\}\right\rangle = \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2}\right\rangle \\ \begin{array}{c} \text{Strength of azimuthal anisotropy} \end{array} \quad v_2 = \left\langle \cos\{2(\phi - \Psi_2)\}\right\rangle = \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2}\right\rangle \\ \end{array}$$

18

$v_2 p_T$ dependence in p+Pb collisions

In central event, corrected v_2 is consistent more than measured v_2

$v_2 p_T$ dependence in d+Au collisions

- * v₂^{RXNP} via event plane method and via two particle correlation method is larger than v₂^{BBC} and v₂^{MPC}
 - eta-gap between CNT and RXNP
 is narrower than CNT-BBC(MPC)
- v₂^{RXNP} via reference fit method is consistent with v₂^{BBC} and v₂^{MPC}

