

Jet azimuthal distributions with high p_T neutral pion triggers in pp 7 TeV and PbPb 2.76 TeV

University of Tsukuba Daisuke Watanabe

Outline

- Physics motivation of π^0 jet correlation
- Data set and cut condition
- Analysis procedure
- Results
 - pp analysis
 - Pb-Pb analysis
- Summary

Physics motivation of π^0 -jet correlation

- Can control path length by tagging a recoil jet with triggered π^0 and changing p_T for π^0
- High p_T of π^0 -> longer path length of recoiling jets
- Direct measurement of path length dependence of "jet" quenching, not by hadron
- pp analysis is an important baseline for PbPb analysis

A Large Ion Collider Experiment (ALICE)

- Data set
 - pp collisions at $\sqrt{s} = 7$ TeV with EMCal triggered events
 - Pb-Pb collisions at Vs_NN = 2.76 TeV with EMCal triggered events

2014/08/06

- The opening angle of the neutral mesons decay photon becomes smaller, when increasing the neutral meson energy due to Lorentz boost
- In the EMCAL, when the energy of π^0 is lager than 5 GeV
 - The two clusters of decay photon start to be close
 - The electromagnetic showers start to overlap

Charged jet reconstruction (FASTJET)

 $d_{ij} = \min(k_{ii}^{2p}, k_{ij}^{2p}) \frac{\Delta R^2}{R^2} \begin{cases} p=1 & k_{\rm T} \text{ algorithm} \\ p=0 & \text{Cambridge/Aachen algorithm} \\ p=-1 & \text{anti-k}_{\rm T} \text{ algorithm} \end{cases}$

Procedure of jet finding

- 1. Calculate particle distance : d_{ii}
- 2. Calculate Beam distance $:d_{iB} = k_{ti}^{2p}$
- 3. Find smallest distance $(d_{ij} \text{ or } d_{ib})$
- If d_{ij} is smallest combine particles
 If d_{ib} is smallest and the cluster
 momentum larger than threshold
 call the cluster Jet

Parameters

- R size (= $\sqrt{\Delta \phi^2} + \Delta \eta^2$) : 0.4
- p_T cut on a single particle : 0.15 GeV/c
- Jet energy threshold : 10 GeV/c
- Jet acceptance : $|\eta| < 0.5, 0 < \varphi < 2\pi$

• ALICE jet analysis have used an event-averaged energy density per unit area p

$$p_{\mathrm{T},j}^{sub} = p_{\mathrm{T},j} - \langle \rho \rangle \times A_j \qquad \rho = \mathrm{median}\{\frac{p_{\mathrm{T},i}}{A_i}\}$$

- Local energy density ρ(φ)
 - estimate background density with including the effect of the azimuthal anisotropy

$$\rho(\varphi) = \rho_0 \times \left(1 + 2 \left\{ v_2^{\text{obs}} \cos(2[\varphi - \Psi_{2,EP}]) + v_3^{\text{obs}} \cos(3[\varphi - \Psi_{3,EP}]) \right\} \right)$$

Procedure of Local BKG density estimation

- 1. Calculate ρ_0 by using median method
- 2. Fill a histogram of the ϕ of soft track (0.2<p_T<5.0)
- 3. Exclude area of the leading jet of an event from the sample and all tracks within the same η region of leading jet are rejected from the sample ($|\eta_{track}-\eta_{leading iet}| < R$)
- 4. Calculate the event plane
- 5. Fit a histogram

Centrality:0~10%

Jet p_T spectrum with two different event plane regions

University of Tsukuba

Work in progress

pp 7 TeV

Trigger p_T dependence of azimuthal correlations

Increasing charged jet p_T threshold

- Two clear jet-like peaks are observed, indicating that high p_T π^0 production is correlated with jet production
- Jet yields of near and away side

increase with increasing trigger $\pi^0\,p_{_T}$

筑波大学

University of Tsukuba

Near and away-side widths as a function of $\pi^0 p_T$

- Near and away-side widths decrease slightly with increasing trigger $\pi^0 p_T$
- Almost no difference observed for different jet p_T thresholds studied

Pb-Pb 2.76 TeV

π^0 -jet azimuthal correlation in Pb-Pb 2.76 TeV

Recoil jet pt distribution

- Distributions of pp 7 TeV are strongly biased towards high p_T region with increasing trigger $\pi^0~p_T$

TCF

Summary

- π^0 -jet correlations have been measured in pp collisions at $\sqrt{s} = 7$ TeV and Pb-Pb collisions at $\sqrt{s}_{NN} = 2.76$ TeV with cluster splitting method
- pp collisions $\sqrt{s} = 7 \text{ TeV}$
 - Azimuthal yields per trigger π^0 increase with increasing trigger $\pi^0\,p_T$
 - Both near and away side Gaussian widths are decreasing with increasing $p_{\rm T}$ of trigger π^0
 - π^0 -jet correlation measurement in pp collisions provides a important baseline for Pb-Pb data
- Pb-Pb collisions $Vs_{NN} = 2.76 \text{ TeV}$
 - Near and away side peaks increase with increasing trigger $\ensuremath{p_{\text{T}}}$
 - Recoil jet yields are suppressed with increasing trigger $\pi^0 \ p_T$ compared with pp 7 TeV

Back up

Invariant mass reconstruction

- 3σ invariant mass window from peak mean is selected as π^0
- We can identify π^0 up to 40 GeV/*c*

Jet physics of heavy ion collisions at the RIHC and LHC

- Mainly particle correlation analyses due to lower jet cross section at the RHIC than at the LHC
- Difficult to extract information on initial parton energy and parton path length in QGP

More detailed measurements are needed

- Initial parton energy : γ-jet analysis
- Parton path length : hadron-jet analysis

The procedure of cluster splitting method

- 1. Select neutral cluster with $\lambda_0^2 > 0.3$, track matching etc
- 2. Find local maxima in the cluster
- 3. Split the cluster in two new sub-clusters taking the two highest local maxima cells and aggregate all towers around them (form 3x3 cluster)
- 4. Get the two new sub-clusters, and calculate energy asymmetry and invariant mass

π^0 identification purity and efficiency (pp 7 TeV)

$\pi^0 p_T$ spectrum

22

Event mixing and reconstruction efficiency correction

- Detector acceptance correction (event mixing method)
 - 100 events pool
 - Z vertex = (-10, 10) cm, 2 cm wide bins
 - -Track multiplicity, 9 bins on multiplicity (pp analysis)
 - Centrality, 10 bins (PbPb analysis)

 $C(\Delta \varphi) = \frac{\int N_{pair}^{mixed}(p_T^{\pi^0}, \Delta \varphi) d\Delta \varphi}{\int N_{pair}^{same}(p_T^{\pi^0}, \Delta \varphi) d\Delta \phi} \cdot \frac{N_{pair}^{same}(p_T^{\pi^0}, \Delta \varphi)}{N_{pair}^{mixed}(p_T^{\pi^0}, \Delta \varphi)} \qquad \qquad \frac{1}{N_{trig}^{\pi^0}} \frac{dN^{jet}}{d\Delta \phi} = \frac{\int N_{pair}^{same}(p_T^{\pi^0}, \Delta \varphi) d\Delta \phi}{N_{trig}^{\pi^0}(p_T^{\pi^0})} \cdot C(\Delta \phi)$

- π^0 and jet reconstruction efficiency correction (bin-by-bin correction, only pp analysis)
 - π^0 reconstruction efficiency (non-uniform): $\Delta p_T = 1.0 \text{ GeV}/c$
 - Jet finding efficiency (uniform) : 3 different jet p_T bins

Azimuthal yield comparison to MC (corrected data vs particle level MC)

• PYTHIA calculations consistent with pp 7 TeV data

ALICE

Comparison of away side yields between h[±]-jet(Filip's analysis) and π^0 -jet

- These figure are applied a bin-by-bin correction.
- The correction factors are the ratios of particle level to detector level.

