Recent flow results at RHIC

Hiroshi Masui / University of Tsukuba

Flow and heavy flavour workshop in high energy heavy ion collisions: GRN workshop, Inchon, Feb./24-26, 2015

Outline

- Multi-strange hadrons
 - Mass ordering violation
- v₂ at RHIC Beam Energy Scan
 - Identified hadron v₂
 - Blast wave model fit to v₂
- Direct photon vn & blast wave fit
- Summary

Reminder

$$\frac{dN}{d\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos\left(n[\phi - \Psi_n]\right)$$
$$v_n = \left\langle \cos\left(n[\phi - \Psi_n]\right) \right\rangle$$

- $v_n \neq$ (hydrodynamical) flow
- + v_n is the azimuthal anisotropy of particles in momentum space
- Crucial to understand the non-flow background
 - ▶ momentum conservation (on v₁), resonance decay, jet, ...
- Multi-particle correlation (cumulant), and/or large rapidity gap are typical methods to avoid non-flow
- Most of non-flow is 2-particle correlation, short-range correlation in (pseudo)rapidity

Multi-strange hadrons

Multi-strange hadrons

STAR White paper: **Nucl. Phys. A757** (2005) 102-183

- Multi-strange hadrons (ϕ , Ω) freeze-out early
- Ideal hydrodynamical model with hadron cascade shows mass ordering violation between p and ϕ
- ▶ v₂(p) < v₂(φ) in low p_T
- radial flow at late stage + less hadronic cross section for ϕ , Ω

Multi-strange hadrons

T. Hirano et al: **PRC77**, 044909 (2008)

- Multi-strange hadrons (ϕ , Ω) freeze-out early
- Ideal hydrodynamical model with hadron cascade shows mass ordering violation between p and ϕ
- $v_2(p) < v_2(\phi)$ in low p_T
- radial flow at late stage + less hadronic cross section for ϕ , Ω

Particle identification

- Topological reconstruction of Ξ and Ω
- Combinatorial background is estimated by rotational background from the same event

Mass ordering of v₂(p_T)

- Event plane with gap $|\Delta \eta|$ =0.1
- v₂(φ) > v₂(p) at low p_T
 - The effect is stronger in central
 - qualitatively consistent with the prediction from hydro. + hadron cascade model

Recent update of hydro. model

- Initial geometry fluctuation (MC Glauber), Lattice EoS
- Reasonable agreement with the data

Λ

 ϕ

Effect of hadronic rescattering

- Less rescattering effect on multi-strange hadrons
- Mean p_T for multi-strange hadrons deviate from m_T scaling
- v₂ almost unchanged between fluid and final stages

 $V_2(\phi_T)$ for π , p and ϕ $V_2(\phi)$ vsvit 200 f hadronic rescatterings - switch on/off hadronic rescatterings

- $v_2(\pi) > v_2(p) \ge v_2(\phi)$ without rescattering
- $v_2(\pi) > v_2(\phi) > v_2(p)$ with rescattering
- Confirmed violation of mass ordering
- ~20% effect around 0.5 GeV/c in minimum bias events

200 GeV is special ?

v₂(p) > v₂(φ) in 7.7 - 62.4 GeV

- Hadronic phase become dominant ?
- Temperature dependent η /s ?

v₂ in RHIC Beam Energy Scan

RHIC Beam Energy Scan

- Cross-over transition at μ_B=0
- from 1st principle Lattice QCD calculations
- If phase transition is 1st order at high baryon density, the end point is QCD critical point
- Beam energy scan → reach high baryon density
- Goals of BES at RHIC:
 - Search for turn-off QGP signals
 - Search for signals of 1st order phase transition
- Search for signals of QCD critical point

Number of Constituent Quark scaling

PHENIX: PRL98, 162301 (2007)

- Apparent scaling by KE_T = m_T m₀
- Meson and baryon branches
- NCQ scaling of $v_2 \rightarrow$ hadronization by parton coalescence
- Originally predicted in intermediate p_T
- Scaling works well down to low KE_T at RHIC

NCQ scaling of v₂

STAR: PRL110, 142301 (2013)

- Two branches, mesons & baryons in v₂(m_T-m₀) at 62.4 GeV
- Antiparticles already scaled before dividing by n_q at 11.5 GeV
 - NCQ scaling doesn't hold for antiparticles

Particles vs antiparticles

STAR: PRC88, 014902 (2013)

- Quantify the difference of v₂ between particles and antiparticles
 - NCQ scaling does not hold between particles and antiparticles
 - Scaling seems to work separately
- Difference of v₂ increase with decreasing beam energy, in particular for baryons
- Difference of v_2 is linear as a function of μ_B
 - related to baryon stopping ?

Blast wave model

 $v_{2}(p_{T}) = \frac{\int_{0}^{2\pi} d\phi_{s} \cos(2\phi_{s}) I_{2}[\alpha_{t}(\phi_{s})] K_{1}[\beta_{t}(\phi_{s})][1 + 2s_{2} \cos(2\phi_{s})]}{\int_{0}^{2\pi} d\phi_{s} I_{0}[\alpha_{t}(\phi_{s})] K_{1}[\beta_{t}(\phi_{s})][1 + 2s_{2} \cos(2\phi_{s})]}$ $\alpha_{t}(\phi_{s}) = \frac{p_{T}}{T} \sinh \rho(\phi_{s}), \ \beta_{t}(\phi_{s}) = \frac{m_{T}}{T} \cosh \rho(\phi_{s}),$ $\rho(\phi_{s}) = \rho_{0} + \rho_{a} \cos 2\phi_{s}, \ \beta = \tanh(\rho_{0})$

Assumptions

- boost invariant longitudinal expansion
- + system expands with common transverse velocity $\boldsymbol{\beta}$
- freeze-out at constant temperature T
- Mass dependence only appears in β_t via m_T
- Fit particles and antiparticles separately in $p_T < 1.2$ GeV/c
- Simultaneous fit for measured particles (or antiparticles) with 3 parameters (s₂, ρ₀, ρ_a)
- T is fixed to 120 MeV since published p_T spectra is not available

Blast wave fit to v₂(p_T)

X. Sun, H. Masui, A. M. Poskanzer, A. Schmah **PRC91**, 024903 (2015)

• Excluded pions from the fit for RHIC data (huge feed down)

• Clear mass ordering in blast wave fit

Why does blast wave work ?

$$\beta_t(\phi_s) = \frac{m_T}{T} \cosh \rho(\phi_s)$$

- For the same β
 - heavier particles have larger p_T
 - $K_1(\beta_t) \sim exp(-\beta_t)$
 - For a given p_T, v₂ is more out-of-plane extended for heavier particles
 - because particles around inplane pushes to higher p_T
 - lighter particles have larger v₂

Feed down on pions ?

- pions
- data > blast wave in
 7.7-200 GeV
- feed down ?
- Use MC simulation to evaluate feed down
 - due to lack of spectra, resonance measurements

21/30

Large radial flow for antiparticles

• Large spread of v₂ for antiparticles at lower energies

• Fit is better for antiparticles in terms of χ^2

- Different β for particles and antiparticles at lower energies
- Possible scenarios
- Antiparticles produced early \rightarrow large β since radial flow is cumulative
- Fraction of net-protons (stopped protons) increase, already significant at 62.4 GeV → baryon stopping ?

Transverse velocity

Baryon stopping ?

- v₂ could be different for produced and transported quarks → particles are contaminated by transported u & d quarks
- Surface emission of antiprotons due to the absorption \rightarrow effect is larger for lower energies (larger μ_B), smaller at higher energies

Direct photon V_n

Direct photon puzzle

- Enhancement of direct photon p_T spectra relative to p+p
- Inverse slope T~240 MeV (0-20%) for the excess of p⊤ spectra
- Large v₂ for direct photon at low p_T
- comparable to the v_2 for π^0
- Is direct photon emitted early (p_T spectra) or late (v₂) ?

Several scenarios

- Strong magnetic field $\rightarrow v_2 > 0$, $v_3 \sim 0$
- Radial flow effect $\rightarrow v_2 > 0$, $v_3 > 0$
- Measurements of v₃ provide additional constraints on direct photon production mechanism

Direct photon v₃

PHENIX: QM2014

- Non-zero, positive v₃
- No strong centrality dependence, similar with hadron v₃
- Strong magnetic field scenario cannot explain the data

Blast-wave fit

Sanshiro Mizuno, D-thesis

- Blast wave fit to direct photon pT spectra & vn
- p_T spectra can be fitted with the same T for hadrons
- Reasonable description for v₂ & v₃

Summary

- Multi-strange hadron v₂ at 200 GeV shows mass ordering violation
- need quantitative comparison with the latest hydrodynamical models
- v₂ at RHIC BES (particles vs antiparticles)
 - NCQ scaling break down between particles and antiparticles
 - can be understood as different radial flow velocity (if mass ordering of v₂ is only due to radial flow)
 - Need more statistics, better model calculations

• Finite direct photon v_n at RHIC

- Naive strong magnetic field scenario cannot explain the data
- Large v_n, blast wave fit (if applicable) could support that direct photons are emitted from late stage