Heavy-flavour productions in the relativistic heavy ion collisions

Shingo Sakai, Univ. of Tsukuba
Heavy Flavour (HF) in pp, p-Pb & Pb-Pb

- Heavy-flavour (charm & beauty) production
 - Initial hard scatterings ($M_{\text{HF}} \gg \Lambda_{\text{QCD}}$)
 - Flavour creation, flavour excitation, gluon splitting
 - pp collisions
 - Test for perturbative QCD (pQCD)
 - Reference for heavy ion collisions (both experiment & theory)
- Heavy ion collisions
 - Created in initial parton-parton scatterings
 - Traverse and interact with the hot & dense QCD matter
 - A good probe to study properties of the QCD matter
 - Energy loss (R_{AA}), collectivity (v_2), hadronization
- pA collisions
 - Control measurement for heavy ion collisions to disentangle initial from final state effects
 - Cold nuclear matter effect on heavy-flavour production
Energy Loss of heavy flavours

- **In-medium parton energy loss**
 - Radiative energy loss \((\text{PLB 632, 81})\)
 - gluon bremsstrahlung
 - smaller energy loss for heavy than for light quarks due to “dead cone” effect \((\text{PLB 519 (2001) 199.})\)
 - energy loss depends on the colour charge and is larger for gluons than for quarks
 - **Collisional energy loss** \((\text{PLB 649, 139})\)
 - energy loss via elastic scattering

- **Theoretical predictions:**
 - mass & colour charge dependence of energy loss
 - \(E_{\text{loss}}(g) > E_{\text{loss}}(u,d,s) > E_{\text{loss}}(c) > E_{\text{loss}}(b)\)

\[
R_{AA}^\pi < R_{AA}^D < R_{AA}^B
\]

Nuclear modification factor

\[
R_{AA}(p_T) = \frac{d N_{AA}/dp_T}{\langle T_{AA} \rangle \times d\sigma_{pp}/dp_T}
\]
Azimuthal anisotropy of Heavy flavours

- Elliptic flow
 \[\frac{dN}{d(\varphi-\psi_{RP})} = ... + N_0(1+2v_2\cos(2(\varphi-\psi_{RP}))) + ... \]

- Transfer initial spatial anisotropy to momentum anisotropy
 - macroscopic: hydro model
 => pressure gradient
 - microscopic
 => scattering in the medium

- Low \(p_T \)
 - coupling of heavy quarks with the medium and their thermalization

- Intermediate \(p_T \)
 - Hadronization mechanism (recombination)

- High \(p_T \)
 - Path-length dependence of energy loss

Initial spatial anisotropy

Momentum space anisotropy of particle emission
Heavy-flavour results in pp collisions
HF production in pp collisions at RHIC

- Charm and beauty production via electrons are in good agreement with FONLL calculation
HF production in pp collisions at LHC

Productions of leptons (e, µ) from charm + beauty decays in different rapidity ranges are well described by pQCD calculations.
Charm production in pp collisions at LHC

- D meson production mid- and forward-rapidity is in good agreement with pQCD calculations
 - upper side of the FONLL uncertainty band
 - various energies: 5.02, 7 and 13 TeV
 - from $p_T = 0$ to 100 GeV/c
Beauty production in pp collisions at LHC

B meson production is in good agreement with pQCD calculations.
Beauty jets production in pp collisions at LHC (2)

- b-jet productions in pp collisions at 7 TeV
 - production is well described with MC@NLO in large rapidity regions
Cross section of charm and beauty are in good agreement with pQCD
Beam energy dependence is consistent with pQCD (NLO, FONLL)
Heavy-flavour results in pA collisions
p-A collisions

- Heavy-flavour in p-A collisions
 - control measurement for heavy-ion collisions to disentangle initial (cold nuclear matter effects) from final state effects

- Cold nuclear matter effects
 - nuclear modification of Parton distribution Functions (PDF): shadowing or gluon saturation
 - K.J. Eskola et al., JHEP 0904(2009)65
 - H. Fuji & K. Watanabe, NPA 915 (2013) 1
 - energy loss I. Vitev et al., PRC 75(2007) 064906
 - k_T broadening (Cronin enhancement)
 - multiple collisions
 - A.M. Glenn et al., PLB 644(2007)119

$$R_{pPb}(p_T) = \frac{d N_{pPb}/dp_T}{\langle T_{AA} \rangle \times d\sigma_{pp}/dp_T}$$
R_{dA} of e^{HF} & μ^{HF} at RHIC

- HF production in d+Au at 200 GeV
- mid-, forward & backward
R_{pPb} of D, B and eHF at mid-rapidity at LHC

- R_{pPb} of D mesons, B mesons and eHF is consistent with unity
 - No significant cold nuclear matter effects on heavy-flavour production
- Theoretical calculations with CNM effects are consistent with data
 - predict a small suppression at low p_T due to gluon saturation at low x
R_{pA}: RHIC vs. LHC

- Enhancement of e^{HF} production in 0-20% in d+Au is well reproduced by Blast-wave model [PLB 731 (2014) 51]
- Possible enhancement due to radial flow is predicted smaller at LHC
 - consistent with data
 - due to harder D and B meson p_T at higher collision energy
R_{pPb} of c-jets and b-jets at mid-rapidity

CMS-HIN-15-012

Measured c-jet cross section in p-Pb is consistent with PYTHIA simulation

R_{pPb} of b-jet with PYTHIA-based estimation is consistent with unity
- considering the uncertainty on the PYTHIA reference

PLB 754 (2016) 59

pPb 35 nb^{-1} (5.02 TeV)

![Graph showing c-jet and b-jet cross sections](image)

- **c-jet**
 - Data: Yellow bars
 - PYTHIA Z2: Blue line

- **b-jet**
 - pPb luminosity uncert.
 - pp reference uncert.

Huang, Kang, Vitev (Ref. [29])
D production at forward-backward rapidity

LHCb-CONF-2016-003

- D⁰ production at forward and backward rapidity
 - forward: p-going, 1.5 < y < -4
 - backward: Pb-going, -5 < y < -2.5
- Significant D⁰ production asymmetry in forward – backward rapidity regions
- Measurements are consistent with a theoretical calculation
 - NLO with CTEQM and EPS09NLO
B->J/Ψ production at forward-backward rapidity

JHEP 02 (2014) 072

- B->J/Ψ production at $1.5 < \eta < 4.0$ (forward) and $-5 < \eta < -2.5$ (backward)
- R_{FB} of B->J/Ψ is asymmetry
 - backward yield is suppressed w.r.t. forward yield
- R_{FB} of B->J/Ψ is larger than R_{FB} of prompt J/Ψ
 - indicate cold nuclear matter effect is less pronounced for b hadrons
Heavy-flavour results in AA collisions
D mesons in Au-Au (200 GeV)

- D meson production at 200 GeV in Au-Au collisions
- Total production follow binary scale
- Low p_T (< 2 GeV/c): tend larger than unity
 - recombination, radial flow?
- High p_T (>2 GeV/c): strongly suppressed
 - indicate charm energy loss in the matter
R_{AA} of e^{HF} ($c\rightarrow e$ and $b\rightarrow e$) in Au-Au (200 GeV)

- R_{AA} of $D\rightarrow e$ and $B\rightarrow e$

- Strong suppression both electrons original from charm and beauty indicate charm and beauty energy loss in the matter

- R_{AA} of $B\rightarrow e$ and $D\rightarrow e$ are consistent within current uncertainty
 - not conclude mass dependence of energy loss
Strong suppression of D mesons production

- similar magnitude of suppression in 2.76 and 5.02 TeV
- suppression observed up to 100 GeV/c at 5.02 TeV
- D_s tends to larger: a hint of recombination process
- Suggest significant energy loss of charm in the medium
\(e^{\text{HF}} \& \mu^{\text{HF}}\) production in Pb-Pb collisions (2.76 TeV)

- Strong suppression of \(e^{\text{HF}} (|y|<0.6)\) & \(\mu^{\text{HF}} (2.5<y<4)\) in central collisions
 - similar suppression of \(e^{\text{HF}} \& \mu^{\text{HF}}\) in different rapidity regions
 - less suppression in mid-central collisions in both rapidity regions
 - high \(p_T\): large contribution from beauty

- Suggest significant energy loss of charm and beauty in the medium
Similar order of suppression of D meson production in 0.2 TeV (Au-Au) and 2.76 TeV (Pb-Pb) in most-central collisions at $2<p_T<6$ GeV/c

- Looks there is difference at low p_T
 - recombination, radial flow @ RHIC?
 - shadowing @ LHC?
RHIC vs. LHC: HF->e production

- Similar order of suppression of c->e + b->e production in 0.2 TeV (Au-Au) and 2.76 TeV (Pb-Pb) in most-central collisions at $3<p_T<9$ GeV/c

- Not imply similar HF energy loss between RHIC and LHC
 - combined effect of a denser medium and harder initial p_T spectrum at LHC

arXiv:1509.06888
R_{AA} of B meson decays ($B\to e$ & $B\to J/\Psi$) in LHC

- Suppression of $B\to e$ and $B\to J/\Psi$ at high p_T
 - lower p_T: tends to follow binary scaling (consistent with unity)
 - high p_T (> 3 GeV/c): $R_{AA} \sim 0.4-0.5$
- Suggestions of beauty energy loss in the dense QCD matter
The magnitude of D meson suppression is similar to charged particles (π) within uncertainties at $p_T > 8$ GeV/c

- can’t conclude on the expectation: $R_{AA} (D) > R_{AA} (\pi)$

- R_{AA} of D meson is smaller than R_{AA} of B->J/Ψ

 - indication of smaller energy loss of beauty than charm
Beauty jet in LHC

- Heavy-flavour jets: allow to address energy loss at parton level
- Observed strong suppression of b-jets in most-central collisions
 - similar magnitude of suppression to inclusive jet
 - high p_T b-jets: largely comes from gluon splitting
Imbalance of pairs of b jets in LHC

- Sub-leading recoil jets
 - larger path-length, primary b-jets from flavour creation
- Toward increasing imbalance with increasing centrality
 - similar imbalance as inclusive dijet
Azimuthal anisotropy of HF (D and e) at RHIC

Non-zero HF v_2 (D & e$^{\text{HF}}$) in Au-Au collisions at 200 GeV
- v_2 at lower energies (62.4 & 39 GeV) is consistent with zero at $p_T < 2$ GeV/c
 - non-zero light-flavour (π, k & p) v_2 in the energy regions (arXiv:1601.07052)
Azimuthal anisotropy of D mesons in LHC

Non zero D v_2 at low p_T
- Tends to get large from central (0-10%) to mid-central (30-50%)
 - Hydrodinamical behavior
- Consistent with charged particle v_2
- Charm quarks participate to the collective motion of the system
Azimuthal anisotropy of e^{HF} and μ^{HF} in LHC

e^{HF}: arXiv: 1606.00321, μ^{HF}: PLB 753 (2016) 41-56

- Non-zero v_2 of e^{HF} at $|y|<0.7$ and μ^{HF} at $2.5<y<4$
 - the magnitude is compatible in mid- and forward-rapidities
- v_2 of e^{HF} measured from $p_T > 0.5$ GeV/c
 - similar p_T dependence to other light hadron v_2
- v_2 at high p_T e^{HF} and μ^{HF} reflects beauty
- Charm quarks participate to the collective motion of the system
Comparison with models (1)

JHEP09(2012)112

- **Theoretical calculations**
 - **initial:** with/without cold nuclear matter from PDF
 - **medium modeling:** Hydro, Glauber, parton transportation
 - **interaction:** radiative, collisional, resonant interaction
 - **hadronization:** fragmentation, coalescence
- **Models represent** R_{AA} of D mesons, e^{HF} and μ^{HF}
 - mid- and forward-rapidity regions
 - high p_T leptons (e, μ) mainly from beauty decay

Comparison of Models

- **ALICE D**, D^*, D^+ average, $|y|<0.5$
- **Pb-Pb, $\sqrt{s_{NN}} = 2.76$ TeV**
- **Centrality 0-20%**

ALICE Preliminary

- **Pb-Pb, $\sqrt{s_{NN}} = 2.76$ TeV, 0-10% central**
 - with pp ref. from scaled cross section at $\sqrt{s} = 7$ TeV
 - with pp ref. from FONLL calculation at $\sqrt{s} = 2.76$ TeV
 - **BAMPS el.**
 - **BAMPS el. + rad.**
 - **TAMU elastic**
 - **POWLANG**
 - **MC@sHQ+EPOS, Coll+Rad(LPM)**

BAMPS: J. Phys. G 38 (2011) 124152,

TAMU: Phys. Rev. C 86 (2012) 014903,

WHDG: J. Phys. G38(2011)124114,

Cao, Qin, Bass: arXiv:1308.0617
Model calculations are reasonably reproduced D meson R_{AA} in both RHIC (0.2 TeV Au-Au) and LHC (2.76 TeV Pb-Pb)
Comparison with models (3)

- Theoretical calculations
 - initial: with/without cold nuclear matter from PDF
 - medium modeling: Hydro, Glauber, parton transportation
 - interaction: radiative, collisional, resonant interaction
 - hadronization: fragmentation, coalescence

- Large suppression and non-zero v_2 (at low p_T) are represented by models, but simultaneous reproduction of the R_{AA} and v_2 is challenging
Comparison with models (3)

- **Experimental result**
 - $R_{AA}(D) < R_{AA}(B\to J/\Psi)$

- **Theoretical model**
 - radiative + collisional energy loss
 - used two masses (charm and beauty) for calculating $B\to J/\Psi$ R_{AA} to study mass dependence
 - result using beauty mass well represents centrality dependence of R_{AA} ($B\to J/\Psi$)
 - the difference between D meson and $B\to J/\Psi$ is mainly from mass in this model
Summary

- Heavy-flavour productions in pp collisions at 200 GeV, 2.76 TeV, 7 TeV and 13 TeV
 - The productions are well described by pQCD calculations
- Heavy-ion collisions (Au-Au 200 GeV, Pb-Pb 2.76 & 5.02 TeV)
 - Strong suppression of heavy-flavour yield
 - Clear indication for substantial energy loss of charm and beauty in the hot and dense matter
 - Non-zero & centrality dependence of v_2
 - Suggest strong re-interaction in the medium
- Heavy flavours observed to be significantly affected by hot and dense QCD medium