

Measurement of Inclusive Charged Jet Production in pp and Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE

Hiroki Yokoyama for the ALICE collaboration

LPSC, Université Grenoble-Alpes, CNRS/IN2P3 University of Tsukuba, Japan

Hard Probes 2016 24/09/2016

Outline

- *Introduction
 - *Jet quenching
- ***ALICE** experiment
- * Measurement of inclusive charged jets in $\sqrt{s_{NN}} = 5.02$ TeV pp and Pb-Pb collisions
 - *Jet cross section in pp
 - *Underlying event density
 - *Underlying event fluctuation
 - ***** Jet cross section in Pb-Pb
 - ***Nuclear modification Factor**
 - *Comparison with previous results
- *****Summary and Outlook

Jets in HI Collisions (Hard Probes of the QGP)

What's a Jet?

- Collimated spray of hadrons produced by the hard scattering of partons at the initial stage of the collision
- high-Q² process, p_T ≥ 20 GeV

Why Jets ?

- The QGP lifetime is so short (~10⁻²³ s) that characterisation by external probes is ruled out
 - self-produced probes
- Occur at early stage : τ ~ 1/Q
 - probe the entire medium evolution
- Production rate calculable within pQCD
 - well calibrated probes
- * Large cross-section at the LHC
 - copious production
- Reconstructed jet enables to access
 - 4-momentum of original parton
 - * jet structure (energy re-distribution)

Jet Quenching

- Attenuation or disappearance of observed Jets in Pb-Pb
 - due to partons' energy loss in the QGP
 - jet shape broadening
 - evaluation of the degree of the attenuation allows to assess QGP properties

ALICE Jet Quenching Measurements in Pb-Pb

- * Nuclear modification factor : RAA
 - * if $R_{AA} = 1$, NO modification

$$R_{AA} = \frac{\frac{1}{\langle T_{AA} \rangle} \frac{1}{N_{evt}} \frac{dN_{ch jet}}{dp_{T}d\eta}}{\frac{d\sigma_{pp}}{dp_{T}d\eta}}$$

- ★ High-p_T Hadrons
 - * strong suppression : RAA~0.2
 - * proxy for Jet (parton) : p_T >10 GeV/c
 - * fragmentation of quenched partons

Centrality Dependence of Charged Particle Production at Large Transverse Momentum in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV , PLB 720 (2013) 52

- * <u>Jets</u>
 - strong suppression : R_{AA}~0.4
 - * Jet shape broadens? where is the lost energy?

Measurement of jet suppression in central Pb-Pb collisions at $\sqrt{s_{\text{NN}}}$ = 2.76 TeV , PLB 746 (2015) 1

ALICE Jet Quenching Measurements in Pb-Pb

- * Nuclear modification factor : RAA
 - * if $R_{AA} = 1$, NO modification

$$R_{AA} = \frac{\frac{1}{\langle T_{AA} \rangle} \frac{1}{N_{evt}} \frac{dN_{ch jet}}{dp_T d\eta}}{\frac{d\sigma_{pp}}{dp_T d\eta}}$$

High-p_T Hadrons

strong suppression : RAA~0.2

strong suppression : RAA~0.4

Centrality Dependence of Charged Particle Production at Large Transverse Momentum in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV , PLB 720 (2013) 52

Measurement of jet suppression in central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV , PLB 746 (2015) 1

Jet Measurement in LHC-ALICE

- * ALICE detector : focus on Heavy-Ion Collisions
 - * LHC Run2 period started from 2015
 - * $\sqrt{s} = 13 \text{ TeV pp}$, $\sqrt{s_{NN}} = 5.02 \text{ TeV Pb-Pb}$, pp

Analysis Flow (pp collisions)

* Dataset

- * $\sqrt{s} = 5.02$ TeV, pp collisions
- * MB triggered events (25.5M events)

* Charged track selection

* $|\eta| < 0.9$, $p_T^{track} > 0.15$ GeV/c

*** Jet reconstruction**

- * anti-kt jet reconstruction algorithm
- * R = 0.2, 0.4
- * | η | < 0.7, (p_{T}^{lead} > 5 GeV/c for R_{AA} ref.)

* Unfolding

* to correct for detector effects

* Inclusive jet spectrum

* fully corrected to charged particle level

Analysis Flow (Pb-Pb collisions)

* Dataset

- * $\sqrt{s_{NN}} = 5.02$ TeV, Pb-Pb collisions
- * MB triggered events(3.36M events, ~3% of full statistics)

* Charged track selection

* | η | < 0.9, p_T^{track} > 0.15 GeV/c

*** Jet reconstruction**

- * anti-kt jet reconstruction algorithm
- * R = 0.2
- * $|\eta| < 0.7$, $p_T^{lead} > 5 \text{ GeV/c}$

* Underlying Event subtraction

* background is subtracted from reconstructed jet

* Unfolding

 * to correct for detector effects and background fluctuations

*** Inclusive jet spectrum, RAA**

 fully corrected to charged particle level, assess nuclear modification

pp Inclusive Jet Cross Section

*** Jet cross section**

- * well described by POWHEG NLO calculations within systematic uncertainties
- * poster : Measurement of inclusive charged jet cross section in pp collisions at $\sqrt{s} = 5.02$ TeV with ALICE at the LHC

* Ratio of cross sections

- * σ(R=0.2) / σ(R=0.4)
- * sensitive to the jet structure
- * stronger collimation at high pT
- * well described by PYTHIA6, PYTHIA8 and POWHEG

Underlying Event Density

Challenge in Heavy-Ion Collisions

- large background contribution to jet energy
 - dN_{ch}/dη ~ 1300 (0-10% centrality)

Jet Background Subtraction

- * background density : ρ
 - median k_T excluding the highest two clusters

$$\rho = median \left\{ \frac{p_{\mathrm{T,i}}}{A_{\mathrm{i}}} \right\}$$

* ρ ~ 145 GeV/c for 0-10% (~18 GeV/c for R=0.2 jets)

background subtraction

 background is estimated event-by-event and subtracted from each jet

 $p_{\mathrm{T,ch jet}}^{\mathrm{rec}} = p_{\mathrm{T,ch jet}}^{\mathrm{raw}} - \rho \cdot A_{\mathrm{jet}}^{\mathrm{rec}}$

 minimum leading constituent p_T > 5 GeV/c requirement suppresses combinatorial jets in low momentum

Underlying Event Fluctuation

UE fluctuation : δp_T

* δp_T is used as a measure for background fluctuations

$$\delta p_{\mathrm{T}} = \sum_{i}^{RC} p_{\mathrm{T},i}^{\mathrm{track}} - A \cdot \rho$$

Random Cone Method

- 1) random selection
- 2) RC apart from leading jet ($\Delta r > 1.0$)
 - * to reduce jet component.
 - * $\Delta r = \sqrt{(\eta_{RC} \eta_{jet})^2 + (\phi_{RC} \phi_{jet})^2}$
- 3) use $\eta\phi$ randomised tracks
 - * to exclude flow effect

* δp_T width (magnitude of UE fluctuation)

- fluctuations larger in central than in peripheral collisions
- * ~5 GeV/c for R=0.2, 0-10% centrality

Inclusive Jet Cross Section

* pp Jet cross section (reference for RAA)

- * pp reference run ($\sqrt{s_{NN}} = 5.02 \text{ TeV}$)
- *** POWHEG simulation**
 - * to compensate for the limited statistics of data (extend kinematic reach)

*** Pb-Pb Jet cross section**

- *4 centrality bins (0-10, 10-30, 40-50, 50-90%)
- * correlated uncertainty
 - * correlated among pT bins
- * shape (uncorrelated) uncertainty
 - * related to the shape of spectrum

Nuclear Modification Factor : RAA

RAA in each centrality bin

Increased suppression
 from peripheral ~0.8 to central ~0.4

* difference of pp reference

*pp data / POWHEG simulation*consistent within uncertainties

$$R_{AA} = \frac{\frac{1}{\langle T_{AA} \rangle} \frac{1}{N_{evt}} \frac{dN_{ch jet}}{dp_{T} d\eta}}{\frac{d\sigma_{pp}}{dp_{T} d\eta}}$$

Comparison of R_{AA} with $\sqrt{s_{NN}} = 2.76$ TeV

- * Charged Jet R_{AA} in $\sqrt{s_{NN}} = 5.02$ TeV (R=0.2) is compared with
 - 1. Full Jet R_{AA} in $\sqrt{s_{NN}} = 2.76$ TeV (R=0.2, ALICE)
 - 2. Jet R_{AA} in $\sqrt{s_{NN}} = 2.76$ TeV (R=0.4, ATLAS)
 - Jet energy scale is different,
 (resolution parameter R is different in ATLAS)

- * RAA (5.02TeV) is comparable to RAA (2.76TeV)
 - * denser medium⇒stronger jet suppression
 ⇒smaller R_{AA}
 - * harder collision \Rightarrow flatter jet spectrum \Rightarrow larger R_{AA}
 - effect of flattening of the spectrum
 compensated by stronger jet suppression

Summary

* First measurement of jet R_{AA} at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

- * Charged jet, R=0.2, p_T^{lead} > 5 GeV/c
- * pp cross section , $\sigma(R=0.2) / \sigma(R=0.4)$
 - * well described by POWHEG NLO simulation
- * Evaluation of Underlying Event density / fluctuation
 - * large fluctuating underlying event in most central collisions
- * Nuclear Modification Factor : RAA
 - * strong suppression in most central collisions
 - * R_{AA} value is comparable to $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
 - * effect of flattening of the spectrum compensated by stronger jet suppression

* Outlook

- More statistics to extend kinematic reach (Few percent of full statistics is used in this analysis.)
- * Full-jet measurement
 - * enable direct comparison with Run1 results
 - * three electromagnetic calorimeters in ALICE

BACKUP

Quark-Gluon Plasma

What is QGP ?

- Quark-Gluon Plasma (QGP)
 - Hot & dense color thermalized QCD matter prevailing at the early Universe ~1µs after big bang
 - Deconfined state of quarks and gluons
 - Theoretically inferred through lattice gauge simulations of QCD

How to create ?

- 'Little Bang'
 - high-energy head-on nucleus-nucleus collisions at particle accelerators
 - Recreate QGP droplets for a brief period of time to quantitatively map out the QCD phase diagram

Jet Measurement in LHC-ALICE

Neutral particles : $|\eta| < 0.7$

- EMCal, (DCal : Run2 from 2015-)
 - Pb-Scintillator sampling calorimeter
- * <u>PHOS</u>
 - lead-tungsten crystal (PWO) based calorimeter
- Neutral constituents

- ALICE detector : focus on Heavy-Ion Collisions
 - * LHC Run2 period started from 2015
 - * √s = 13 TeV pp
 - ∗ √s_{NN} = 5.02 TeV Pb-Pb, pp

Charged Particles : $|\eta| < 0.9, 0 < \phi < 2\pi$

pp Inclusive Jet Cross Section

R=0.2

Hiroki Yokoyama : Hard Probes 2016 (24/09/2016)

Data selection

* Data sets

- * Pb-Pb data
 - * LHC15o, √s_{NN} = 5.02 TeV Pb-Pb
 - * pass2 low-IR, AOD (3.36M events)
- * MC simulation data
 - * PYTHIA

(tracking eff. Jet finding eff. detector RM)

* LHC16e1

(pthard-binned, jet production PYTHIA8), $\sqrt{s} = 5.02$ TeV pp

- * LHC15l1b2 (MB, PYTHIA6 Perugia-2011), $\sqrt{s} = 5.02$ TeV pp
- * HIJING (tracking eff.)
 - * LHC15k1a1, LHC15k1a2 , $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ Pb-Pb

* Event Selection

- * kINT7
- * $|v_z^{SPD} v_z^{PRI}| < 0.1 \text{ cm}$ (to avoid UE density mis-estimation)
- $* | v_z | < 10 \text{ cm}$

* Charged track selection

- * Hybrid track selection in which same parameters used with LHC11h.
 - * to compensate for inefficiency in SPD
- * | η | < 0.9, p_T > 0.15 GeV/c

*** Jet Reconstruction**

- * R=0.2 , anti-kt algorithm, pt-scheme
- * | ŋ | < 0.7
- * Jet Area > 0.6 π R²
 - * to reduce fake jet contamination at low PT, jet

Inclusive Jet Spectrum, RAA

Inclusive Jet Spectrum

* scaled by nuclear overlap function : TAA

$\frac{1}{T_{AA}} \frac{1}{N_{evt}} \frac{d^2 N}{dp_{T,ch jet}^2 d\eta_{jet}} (c/GeV)$ ALICE Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ ---- pp(Data) ----- pp(POWHEG) shape uncertainty 🗕 0-10 % Pb-Pb correlated uncertainty 🔫 30-50 % Pb-Pb_ T_{AA} uncertainty 50-90 % Pb-Pb Anti-k_T R=0.2 $|\eta_{iot}| < 0.7$ $p_{\tau}^{\text{lead}} > 5 \text{ GeV/c}$ 10^{-5} 10^{-6} **ALICE Preliminary** 100 90 0 10 20 30 50 60 70 80 $p_{_{\rm T,ch\,jet}}$ (GeV/c)

***** R_{AA} in each centrality bin

* strong suppression in 0-10% than 10-30%
centrality

Underlying Event Density

Charged Track Multiplicity

- large background superimposed to the Jets
 - dN_{ch}/dη ~ 1300 (0-10% centrality)

Underlying Event Density

- * background density : ρ
 - median of k_T clusters except largest two

$$\rho = median \left\{ \frac{p_{\mathrm{T,i}}}{A_{\mathrm{i}}} \right\}$$

- * $\rho \sim 145$ GeV/c for 0-10% (~18 GeV/c for R=0.2 jets)
- * The average background energy density ρ scales linearly with track multiplicity.

Systematic Uncertainty

- * source of systematic uncertainties
 - * RC selection (exclude RC w/ dr < 1.0)</p>
 - * exclude RC w/ dr < 0.5, 1.5
 - * w/o 1st, 2nd lead. jets
 - * Unfolding method (SVD)
 - * Bayesian unfolding
 - * measured $p_{\rm T}$ range (30 120 GeV/c for 0-10% centrality)
 - * ± 5 GeV/c for lower limit
 - * ± 10 GeV/c for upper limit
 - * unfolded p_T range (0 200 GeV/c for 0-10% centrality)
 - * +10 GeV/c for lower limit
 - * ± 25 GeV/c for upper limit

0-10 % centrality	30-40 [GeV/c]	50-60 [GeV/c]
Shape Uncertainties		
Unfolding Method	4.2	4.2
Regularisation Parameter	0.4	3.3
Measured p _T Range	+0.1	+2.1
	-3.2	-1.2
Unfolded p _T Range	+0.1	+0.5
	-0.7	-0.1
Generator	4.2	5.2
Shape Uncertainties : Total	+6.0	+7.8
	-6.8	-7.6
Correlated Uncertainties		
δp _⊺ selection	+5.1	+3.8
	-1.9	-0.9
Flow Bias	6.4	4.6
TrackingEfficiency	1.5	5.9
Correlated Uncertainties : Total	+8.3	+8.4
	-6.8	-7.5

- * Regularisation parameter (k = 5)
 - * k = 4, 6
- * Flow Bias
 - * ± 4 GeV/c for background density
- * Generator selection (Pythia8)
 - * PYTHIA6: Perugia0, HERWIG
- Tracking Efficiency
 - * \pm 4 % from nominal value
 - * evaluated by fast simulation

10-30 % centrality	30-40 [GeV/c]	50-60 [GeV/c]
Shape Uncertainties		
Unfolding Method	2.2	2.2
Regularisation Parameter	1.3	3.9
Measured p _T Range	+1.4	+1.1
	-0.1	-2.4
Unfolded p _T Range	+0.0	+0.6
	-1.2	-0.1
Generator	4.2	5.2
Shape Uncertainties : Total	+5.1	+7.0
	-5.1	-7.3
Correlated Uncertainties		
δp _T selection	+5.4	+4.0
	-1.9	-1.5
Flow Bias	6.0	4.7
TrackingEfficiency	1.5	5.9
Correlated Uncertainties : Total	+8.2	+8.5
	-6.5	-7.7