

Strangeness Production and Nuclear Modification at LHC Energies

Oliver Busch

University of Tsukuba Heidelberg University

for the ALICE collaboration

Outline

- Introduction
- Nuclear modification of identified hadrons in Pb-Pb collisions.
- System size dependence of multi-strange particle production in pp, p-Pb and PbPb collisions

Strangeness with ALICE

forward detectors:

- trigger, timing,
- multiplicity, centrality

Inner Tracking System

- vertex reconstruction
- low-p_T tracking

central barrel:

- tracking |η |< 0.9
- PID

Charged particle identification

- practically all known particle identification techniques are used in ALICE
- identification of light flavour hadrons with p_T from 0.1 to 20 GeV/c

(Multi-)strange hadron reconstruction

$$K_S^0 \to \pi^- \pi^+ \ (B.R. \ 69.2\%)$$

 $\Lambda \to p\pi^- \ (B.R. \ 63.9\%)$

$$\Xi^- \rightarrow \Lambda \pi^- (B.R. 99.9\%)$$

$$\Omega^- \rightarrow \Lambda K^- (B.R. 67.8\%)$$

- charged tracks reconstructed in ITS and TPC
- TPC PID: identify decay daughters
- decay topology: combine reconstructed tracks to particle candidates

(Multi-)strange hadron reconstruction

- TPC PID: identify decay daughters
- decay topology: combine reconstructed tracks to particle candidates
- yield extraction via invariant mass

π , K, p in pp and Pb-Pb at 2.76 TeV

- low p_T (< 3 GeV/c): bulk particle production, collectivity
- high p_T (> 10 GeV/c): fragmentation, parton energy loss
- intermediate p_T: interplay soft-hard, hadronization via recombination ?

Nuclear modification factor

- R_{AA} < 1: at high p_T, strong, centrality dependent suppression
- no species dependence at high p_T

$$R_{AA}(p_{\mathrm{T}}) = \frac{1}{T_{AA}} \frac{\mathrm{d}^2 N_{\mathrm{ch}} / \mathrm{d}\eta \, \mathrm{dp_T}}{d^2 \sigma_{\mathrm{ch}}^{\mathrm{pp}} / d\eta \, \mathrm{dp_T}}$$

(Multi-)strange hadron spectra

- particle and anti-particle spectra compatible
- spectra at low p_T harder for more central collisions and higher particle mass

Ξ nuclear modification factor

- R_{AA} < 1: at high p_T, strong suppression: jet quenching
- no species dependence at high p_T
- R_{AA} of Ξ consistent with p

- vacuum fragmentation in jet core ?
- fragmentation bias of hadronic observable?

Strangeness production in jets:

Y. Zhang, Session III

09/24 15:20

$$R_{AA}(p_{\rm T}) = \frac{1}{T_{AA}} \frac{\mathrm{d}^2 N_{\rm ch}/\mathrm{d}\eta \,\mathrm{d}p_{\rm T}}{d^2 \sigma_{\rm ch}^{\rm pp}/d\eta \,\mathrm{d}p_{\rm T}}$$

Ω nuclear modification factor

- R_{AA} < 1: at high p_T , strong suppression: jet quenching
- no species dependence at high p_T
- R_{AA} of Ξ consistent with p, Ω R_{AA} > Ξ R_{AA}

- mass ordering at mid-p_T
 - $m_p = 0.94 \text{ GeV/c}^2$
 - $m_{\Xi} = 1.32 \text{ GeV/c}^2$
 - m_{Ω} = 1.67 GeV/c²

$$R_{AA}(p_{\mathrm{T}}) = \frac{1}{T_{AA}} \, \frac{\mathrm{d}^2 N_{\mathrm{ch}} / \mathrm{d} \eta \, \mathrm{dp_T}}{d^2 \sigma_{\mathrm{ch}}^{\mathrm{pp}} / d \eta \, \mathrm{dp_T}}$$

Nuclear modification factor

- R_{AA} < 1: at high p_T , strong suppression, jet quenching
- no species dependence at high p_T
- R_{AA} of Ξ consistent with p, Ω R_{AA} > Ξ R_{AA}

- mass ordering at mid-p_T
 - $m_p = 0.94 \text{ GeV/c}^2$
 - $m_{\Xi} = 1.32 \text{ GeV/c}^2$
 - $m_{\Omega} = 1.67 \text{ GeV/c}^2$
- peripheral collisions: R_{AA} closer to unity for all species
- how about system size dependence (strangeness enhancement)?

$$R_{AA}(p_{\rm T}) = \frac{1}{T_{AA}} \frac{\mathrm{d}^2 N_{\rm ch}/\mathrm{d}\eta \,\mathrm{d}p_{\rm T}}{d^2 \sigma_{\rm ch}^{\rm pp}/d\eta \,\mathrm{d}p_{\rm T}}$$

System Size Dependence

Strangeness enhancement: A-A

one of the earliest proposed QGP signatures

- pp: increase with \sqrt{s}
- A-A: enhancement over pp
- saturation for N_{part} > 150
 at value expected from statistical grand-canonical models

- GSI-Heidelberg T_{ch} = 164 MeV
- **---** Thermus $T_{ch} = 170 \text{ MeV}$

A. Andronic et al., PLB 673 (2009) 142

J. Cleymans et al., PRC 74 (2006) 034903

ALI-PUB-7633

0.2

10

Multiplicity dependence: p-Pb

p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV V0A Mult. Evt. Classes (Pb-side)

 $\left<\mathrm{d}\textit{N}_{\mathrm{ch}}\!/\mathrm{d}\eta\right>_{|\eta|<~0.5}$

Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV pp (INEL>0) \sqrt{s} = 7 TeV

- in p-Pb, both Ξ / π and Ω / π exhibit strong rise
 - Ξ / π reaches Pb-Pb saturation value
 - Ω / π up to 60-80%
- ullet Ω stronger multiplicity dependence
- → strangeness dependent effect

Phys. Lett. B 758 (2016) 389

- multiplicity classes based on summed amplitude in V0 detectors
 (2.8 < η < 5.1, -3.7 < η < -1.7)
- p / π and Λ / K^0_S : compatible between pp and p-Pb
- no significant multiplicity dependence
- enhancement in p-Pb governed by strangeness content
 - → how about hyperons in pp?

arXiv: 1606.07424 [nucl-ex]

- Ξ and Ω in pp: strong multiplicity dependence!
- pp similar to p-Pb
- pp models: color ropes needed to produce multiplicity dependence
- no model describes both Ξ and Ω

arXiv: 1606.07424 [nucl-ex]

Pb-Pb - T_{ch}=156 MeV Pb-Pb - T_{ch}=156 MeV MC predictions - pp \s=7TeV - PYTHIA8 Monash No CR PYTHIA8 Monash With CR -- DIPSY Color Ropes **EPOSLHC** 'C 0.6 0.4 ALICE p-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ V0A Mult. Evt. Classes (Pb-side) 0.2 Pb-Pb √s_{NN} = 2.76 TeV pp **\s** = 7 TeV V0M Mult. Evt. Classes 10 10^{2} $\left<\mathrm{d}N_{\mathrm{ch}}\!/\!\mathrm{d}\eta\right>_{|\eta|<~0.5}$

- Ξ and Ω in pp: strong multiplicity dependence!
- pp similar to p-Pb
- pp models: color ropes needed to produce multiplicity dependence
- no model describes both Ξ and Ω

... and Λ and p!

- yield ratios normalised to pp INEL > 0: reduced uncertainties
- p / π consistent with unity

arXiv: 1606.07424 [nucl-ex]

- yield ratios normalised to pp INEL > 0: reduced uncertainties
- p / π consistent with unity

 dependence on strangeness content well described by

$$\frac{(h/\pi)}{(h/\pi)_{\text{INEL}>0}^{\text{pp}}} = 1 + a \, S^b \, \log \left[\frac{\langle dN_{\text{ch}}/d\eta \rangle}{\langle dN_{\text{ch}}/d\eta \rangle_{\text{INEL}>0}^{\text{pp}}} \right]$$

with
$$b = 1.67$$

arXiv: 1606.07424 [nucl-ex]

Summary

- identified charged π , K, p R_{AA} for 0.1 < p_T < 20 GeV/c
- no significant species dependence observed
- Ω R_{AA} > Ξ R_{AA} in measured range (p_T < 7 GeV/c)
- first observation of a multiplicity dependence of strangeness production in pp collisions
- per-pion yields consistent between pp and p-Pb
- effect driven by strangeness content

backup

- INEL > 0 event class: 1 charged particle in |η|< 1
- lines: Levy-Tsallis fits
- blast wave OK within ~5%, T_{fo} = 163 +/- 10 MeV, β = 0.49

(Multi-)strange hadron spectra in p-Pb

- V0A multiplicity classes
- low-p_T spectral shape: similar trends as Pb-Pb

p-Pb nuclear modification factor

- π, K, p R_{pPb} at high-p_T consistent with unity
 - → suppression in Pb-Pb a final state effect

- p, Ξ , Ω show enhancement at intermediate p_T
- mass ordering

Nuclear modification factor

R_{AA} < 1: at high p_T, strong suppression, jet quenching

$$R_{AA}(p_{\rm T}) = \frac{1}{T_{AA}} \frac{\mathrm{d}^2 N_{\rm ch}/\mathrm{d}\eta \,\mathrm{dp_T}}{d^2 \sigma_{\rm ch}^{\rm pp}/d\eta \,\mathrm{dp_T}}$$

- in p-Pb, both Ξ / π and Ω / π exhibit strong rise
 - Ξ / π reaches PbPb saturation value
 - Ω / π up to 60-80%
- Ω stronger multiplicity dependence

- • Ξ (1530⁰): strangeness content as Ξ
 - m_Ξ < m_{Ξ*} < m_Ω
 - increase of Ξ^* / π similar to Ξ / π
 - → multiplicity dependence driven by

Strangeness, not mass liver Busch – Hard Probes 2016

Outlook: hyperons in pp

- first measurement of hyperon production in pp minimum bias collisions at 13 TeV
- hint for an increase of hyperon-to-pion ratio with \sqrt{s}

