Measurement of collective flow
via Two-particle correlation method in $\sqrt{s_{NN}} = 200\text{GeV}$
$^3\text{He}+\text{Au}$ collisions at RHIC-PHENIX

筑波大学
数理物質科学研究科 物理学専攻
塩谷 知弘 for the PHENIX collaboration
Anisotropic Flow

In heavy ion collision, distribution of emitted particles is anisotropic in azimuthal direction.

Anisotropic Flow

Probe sensitive to the properties of the system

Understanding QGP properties using hydrodynamics

Distribution of emitted particles can be written as Fourier formula.

\[
\frac{dN}{d\phi} \propto 1 + \sum_n 2v_n \cos[n(\phi - \Psi_n)] \quad v_n = \langle \cos[n(\phi - \Psi_n)] \rangle
\]

ψₙ: Azimuthal angle of Event Plane

Φ: Azimuthal angle of emitted particles

vₙ: Flow harmonics (measured parameters)

Second order flow harmonics is known as **elliptic flow (v₂)**
Flow in small collision systems

The collective flow has not initially been expected in small collision systems.

Elliptic flow and long-range angular correlation structure have been observed in small systems at RHIC and LHC.

Measured v_2 is expected to include contributions of high momentum particles and elastic scattering. \Rightarrow non-flow effect

How much do non-flow effects contribute to v_2 in small systems?

Motivation

(1) Measure v_2 by conventional method (two particle correlation method)
(2) Remove non-flow effect and measure v_2 (Future plan)
(3) Comparison between (1) and (2) (Future plan)
PHENIX (the Pioneering High Energy Nuclear Interaction eXperiment)

- **Central Arm Detectors (CNT)** \(|\eta| < 0.35\)
 - Particle identification, 3D tracking, momentum measurement

- **Forward Silicon Vertex Tracker (FVTX)** \(1.5 < |\eta| < 2.5\)
 - Silicon strip detector, it can track by detected points.

- **Beam Beam Counter (BBC)** \(3.0 < |\eta| < 3.9\)
 - BBC has 64 elements (PMT and quartz Cherenkov radiator) for each side.
 - Measured signals are used as Centrality, collision point, and Event trigger.
Two-particle correlation method and Event mixing

Correlation function is measured as the azimuthal pair distribution. $\phi_{\text{Trig.}}$ and $\phi_{\text{Asso.}}$ are azimuthal angle of trigger and associate particle.

$$\Delta \phi = \phi_{\text{asso}} - \phi_{\text{trig}}$$

Event mixing

\Rightarrow Event mixing is done to reduce acceptance and efficiency.

$$C'(\Delta \phi) = \frac{S(\Delta \phi)}{B(\Delta \phi)} \cdot \frac{\int B(\Delta \phi) d\Delta \phi}{\int S(\Delta \phi) d\Delta \phi}$$

mix event: B

efficiency

(2 particle from other event)

real event: S

signal + efficiency

(2 particle from same event)
\(\nu_n \) extraction (Fourier fitting and 3-sub method)

- Fit correlation function with 4th Fourier formula and obtain \(C_n \)
 \[
 F(\Delta \phi) = N_0 (1 + \sum_{n=1}^{4} 2C_n \cos(n\Delta \phi))
 \]
- Obtained \(C_n \) can be written as below, \(\nu_n^a \) and \(\nu_n^b \) are \(\nu_n \) for each detectors.
 \[
 C_n = \nu_n^a \cdot \nu_n^b
 \]
- \(\nu_n \) parameters are extracted by 3-sub method with 3 type correlations.
 \[
 \nu_n^a = \sqrt{\frac{C_n^{ab} C_n^{ac}}{C_n^{bc}}}
 \]
 \[
 C_n^{ab} = \nu_n^a \cdot \nu_n^b
 \]
 \[
 C_n^{bc} = \nu_n^b \cdot \nu_n^c
 \]
 \[
 C_n^{ac} = \nu_n^a \cdot \nu_n^c
 \]
 \(a,b,c = \text{detectors} \)

In this analysis, used 3-sub combinations have symmetric eta-gap.

CNT-BBCs-BBCn
CNT-FVTXs(1-4)-FVTXn(1-4)
Correlation functions in CNT-BBCs-BBCn

\[C_2(\Delta \phi) \]

CNT - BBCn	0-5%	5-10%	10-20%	20-40%	40-60%	60%-
\(^3\text{He-going}\)	![Graph](image1.png)	![Graph](image2.png)	![Graph](image3.png)	![Graph](image4.png)	![Graph](image5.png)	![Graph](image6.png)
2.65<\Delta \eta<4.25	clearly difference at Central	![Graph](image7.png)	![Graph](image8.png)	![Graph](image9.png)	![Graph](image10.png)	![Graph](image11.png)

\[CNT \text{ pT 1.0- 2.0 GeV/C} \]

\[\text{CNT pT 1.0- 2.0 GeV/C} \]

\[\text{BBCs - BBCn} \]

\[6.0<\Delta \eta<7.8 \]

-4.25<\Delta \eta<-2.65

\[\text{it is similar to south side} \]

\[\text{data - Fourier} \]

\[\text{almost no difference at peripheral} \]

\[\text{Work in Progress} \]
p_T Dependence of v_2 at $|\eta|<0.35$ (Centrality:0-5%)

- v_2 from this work is consistent with previous publication. (blue symbols, measured by Event plane method)
- Is the Usual Fourier v_2 extraction strongly biased by different eta-gap (and p_T)?
Reference fitting method

Reference fitting is done to reduce effect of non-flow and to elucidate centrality dependence of v_2^{Ref}. Distribution of non-flow effect should have constant parameters (ε_2, v_2...). Peripheral correlations are used as reference function.

$$C_{2\text{Cent}}(\Delta \phi) = \text{soft + non-flow}$$
$$C_{2\text{Ref}}(\Delta \phi) \simeq \text{non-flow}$$

A difference of $c_2(\Delta \phi)$ shape from reference function can be taken as evolution of v_2, ref.

$$F(\Delta \phi) = a \times C_{2\text{Ref}}(\Delta \phi) + b$$

$F(\Delta \phi)$ defined by peripheral event is subtracted from central correlation function. (peripheral v2 is subtracted.)

$$C_{2\text{sub}}(\Delta \phi) = C_{2\text{Cent}} - F(\Delta \phi) + 1$$

Fit subtracted correlation function with Fourier formula and extract v_2^{ref} by 3-sub method.

$$F(\Delta \phi) = N_0(1 + \sum_{n=1}^{4} 2C_n \cos(n\Delta \phi))$$

$$v_n^{\text{Ref}} = \sqrt{\frac{C_n^{ab} C_n^{ac}}{C_n^{bc}}}$$
Comparison with reference function and $C_{2,\text{sub}}(\Delta \phi)$

BBCs - BBCn correlation

$F(\Delta \phi) = a \times C_{2\text{ref}}(\Delta \phi) + b$ — Reference function

Centrality 0 - 5% 5 - 10% 10 - 20% 20 - 40% 40-60% Ref. (>60%)

$C_{2\text{cent}}$ and $C_{2\text{ref}}$

Subtraction

$C_{2\text{sub}}(\Delta \phi) = C_{2\text{cent}} - F(\Delta \phi) + 1$

v_2^{Ref} will be extracted with using subtracted correlations
Summary and Outlook

• v_2 via two-particle correlation method is consistent with previous publication.
• Is the Usual Fourier v_2 extraction strongly biased by different eta-gap (and pT)?
• After Reference Fitting,
 • Subtracted correlation functions show double peak.

Outlook
• Extract v_2 from subtracted correlation by Reference fitting
• Compare v_2 extracted by Reference fitting with previous results
Back up
Analysis flow

- 2 particle correlation
- event mixing

\[C(\Delta \phi, \Delta \eta) = \frac{\int N_{\text{mix}} \Delta \phi \Delta \eta}{\int N_{\text{real}} \Delta \phi \Delta \eta} \frac{N_{\text{real}}(\Delta \phi, \Delta \eta)}{N_{\text{mix}}(\Delta \phi, \Delta \eta)} \]

- Fit by Fourier function.
- Obtain Fourier coefficients \(C_n \)

\[F(\Delta \phi) = N_0 (1 + \sum_{n=1}^{4} 2C_n \cos(n\Delta \phi)) \quad C_n = v_n^a \times v_n^b \]

- Calculate \(v_n \) by 3-sub method

\[v_n^a = \sqrt{\frac{C_n^{ab} C_n^{ac}}{C_n^{bc}}} \]

3-sub combinations

CNT - south - north (symmetric eta gap)
Data Set

RHIC-PHENIX Run14 3He+Au collisions $\sqrt{S_{NN}} = 200$GeV

Event Cut: BBC$_z \neq 0.0$, $|BBCz| < 10$ [cm], $|BBCz - FVTXz| < 2.0$cm

Centrality: BBCsouth multiplicity (MB+High-Mul.Trig)

Detectors
- CNT($|\eta|<0.35$) BBC($3.0<|\eta|<3.9$)
- FVTX($1.5<|\eta|<2.5$): FVTX tracks are divided to 8 region by eta (0.25 step)

Event Mixing Class
- 10 classes about BBCz
- 6 classes about centrality
 (0-5, 5-10, 10-20, 20-40, 40-60, 60-%)
Track cut

- **CNT Track**
 0.2 < mom< 5.0 , |pc3dphi|<3σ , |pc3dz|<3σ (tracking quality = 31 or 63) , |zed|<70

- **BBC PMT**
 cut hit time >0, charge >0

- **FVTX track**
 $\chi^2 < 5.0$, nhits ≥ 3
 $\sqrt{(\sigma_{DCA_x}^2 + \sigma_{DCA_y}^2)} < 2.0$;

 Eta acceptance cut
 -0.025*BBC$_Z$ - 2.45 < η < -0.025*BBC$_Z$ - 1.5
 -0.025*BBC$_Z$ + 2.45 > η > -0.025*BBC$_Z$ + 1.5
p_T Dependence of v_2^{Fourier} (Cent:0-5%)