Jet Properties in Pb-Pb collisions at ALICE

Oliver Busch

University of Tsukuba
Heidelberg University

for the ALICE collaboration
Outline

• Introduction
• Jets in heavy-ion collisions
• Strangeness production in jets
• Jet shapes
• Summary
Introduction
in heavy-ion collisions at ultra-relativistic energies, a quasi macroscopic fireball of hot, strongly interacting matter in local thermal equilibrium is created.

- lattice QCD predicts phase transition to deconfined, chirally symmetric matter.

- energy density from the lattice: rapid increase around T_C, indicating increase of degrees of freedom (pion gas \rightarrow quarks and gluons).

- $T_C = 154 \pm 9$ MeV
 $E_C = 340 \pm 45$ MeV/fm3
QCD matter at LHC

• direct photons:
 prompt photons from hard scattering
 + thermal radiation from QCD matter

• low-p_T inverse slope parameter:
 $T_{\text{eff}} = 297 \pm 12^{\text{stat.}} \pm 42^{\text{syst.}} \text{ MeV/c}$

• indicates initial temperature way above T_C

Partons in heavy-ion collisions

- hard partons are produced early and traverse the hot and dense QGP

- expect enhanced parton energy loss, (mostly) due to medium-induced gluon radiation: ‘jet quenching’

- jet: ‘collimated bunch of hadrons’

- the best available experimental equivalent to quarks and gluons

- ‘vacuum’ expectation calculable by pQCD: ‘calibrated probe of QGP’
Parton fragmentation

- initial hard scattering: high-\(p_T\) partons with high virtuality
- virtuality evolution through parton shower
- hadronisation at a scale (\(O(\Lambda_{QCD})\))
- jets probe the medium at a variety of scales and are sensitive to its properties (energy density, \(\hat{q}\), mean free path, coupling ...)
Hadrons in heavy-ion collisions

• high- p_T hadrons ‘proxy’ for jet

• jet quenching for charged hadrons, Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

\[
R_{AA}(p_T) = \frac{1}{T_{AA}} \frac{d^2N_{ch}}{d\eta dp_T} \frac{d^2\sigma_{pp}}{d\eta dp_T}
\]

![Graph showing R_{AA} vs p_T for ALICE Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV charged particles, $|\eta| < 0.8$.]

ALICE Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV charged particles, $|\eta| < 0.8$

- 0-5%
- 70-80%
Identified hadrons in heavy-ion collisions

- baryons / meson R_{AA} a probe of gluon / quark energy loss?
- would expect stronger radiative energy loss for gluons than for quarks
 - subtle cancellations?
 - hadron observable biased towards hard fragmentation?

- study jets to improve our understanding of parton energy loss:
 - PID in reconstructed jets mitigates fragmentation biases
 - enhanced sensitivity to medium effects measuring soft particles in jets

- note: medium effects likely strongest at scales of ~ medium Temperature

 B. Mueller, hep-ph/1010.4258)
• full jets: assess full parton energy

• charged (tracking) jets:
 - full azimuthal coverage
 - measures parton energy deposited into charged fragments
 - good definition of jet axis: well suited for fragmentation, jet structure, PID …

• charged particle tracking:
 - Inner Tracking System (ITS)
 - Time Projection Chamber
 - full azimuth, $|\eta| < 0.9$
 - $p_T > 150$ MeV/c

• EMCal:
 - neutral particles
 - $\Delta\phi = 107^\circ$, $|\eta| < 0.7$
 - cluster $E_T > 300$ MeV
Underlying event in heavy-ion collisions

- jet reconstruction in heavy-ion collisions: high underlying event background not related to hard scattering
- background is dominant at low jet and constituent p_T
- background fluctuations are important

Jet area $\approx 0.5 \ (R = 0.4)$
Strangeness Production in Jets
Strange hadron reconstruction

- neutral strange particles reconstructed via decay topology (‘V^0’):

 \[K_S^0 \rightarrow \pi^+ + \pi^- \ (69.2\%) \]
 \[\Lambda \rightarrow p + \pi^- \ (63.9\%) \]

- signal extraction from invariant mass distributions
Strangeness production in nuclear collisions

• Baryon / Meson ratio enhanced in Pb-Pb and p-Pb collisions
 - collective effects ?
 - parton recombination ?
 - jet fragmentation ?

• measurement of identified particles in jets helps to constrain hadronisation and energy loss scenarios

Phys. Rev. Lett. 111 (2013) 223001

Strangeness in jets

- candidate - jet matching \((V^0\text{ in jet cone})\)
 \[
 \sqrt{(\phi_{V^0} - \phi_{jet, \text{ch}})^2 + (\eta_{V^0} - \eta_{jet, \text{ch}})^2} < R
 \]
 \[
 |\eta_{jet, \text{ch}}|^{\text{max}} < |\eta_{V^0}|^{\text{max}} - R
 \]

- jet \(R = 0.2\), acceptance \(|\eta_{V^0}| < 0.7\)

- candidate - bulk matching: underlying event \(V^0\)

- signal extraction from invariant mass distributions

- correct for efficiency and feed-down

- subtract underlying event from spectra
Underlying event subtraction

- subtract underlying event contribution to K^0_s, Λ spectra in jets

- various methods with different sensitivity to acceptance, event plane correlations, presence of additional jets, …

- differences used to estimate systematic uncertainty
$(\Lambda + \bar{\Lambda})/2K^0_s$ ratio in jets

- Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV
- jet $R = 0.2$
- $p_T^{\text{jet}} > 10$ GeV/c (20 GeV/c)
- leading constituent bias $p_T^{\text{leading}} > 5$ GeV/c to reject ‘fake’ jets
- no significant jet p_T^{jet} dependence
- ratio in jets significantly lower than for inclusive case
Comparison to p-Pb

- compare Pb-Pb results to reference from p-Pb collisions at 5.02 TeV: agreement within uncertainties

- ongoing efforts to improve systematics for lowest K^0_S, Λ p_T

Pb-Pb

p-Pb

- $\sqrt{s_{NN}} = 5.02$ TeV
- 0-100%, V0A Multiplicity Class (Pb-Side)
- $p_{T,jet}^{ch} > 10$ GeV/c, anti-k_T
- $|\eta_{jet}| < 0.75$ - R, $|\eta_{\gamma^0}| < 0.75$
- inclusive Λ/K^0_S, ALICE, (0-5 %, $|y_{\gamma^0}| < 0.5$)
- $|\eta_{\gamma^0}| < 0.7$
- anti-k_T, $R = 0.2$
- $|\eta_{jet,\gamma^0}| < 0.5$
- $p_T^{leading track} > 5$ GeV/c
- $p_T^{track} > 150$ MeV/c

ALICE Preliminary
Jet Shapes
Jet nuclear modification factor

- strong suppression, similar to hadron RAA
 → parton energy not recovered inside jet cone

- increase of suppression with centrality, weak p_T dependence

- JEWEL:
 - microscopic pQCD parton shower + gluon induced emissions

- YaJEM:
 - detailed fireball model
 - parameterisation of radiative and collisional energy loss

- different models reproduce observed jet suppression
 → study jet quenching through more differential measurements

JEWEL: PLB 735 (2014)
YaJEM: PRC 88 (2013) 014905
Jet shapes

- radial moment ‘girth’ g, longitudinal dispersion $p_T D$, difference leading - subleading p_T LeSub

- shapes in pp collisions at 7 TeV:
 - constrain QCD calculations of small-R jets
 ('microjets': M. Dasgupta, F. Dreyer, G. Salam, G. Soyez)
 - validate MC simulations

- shapes in Pb-Pb as IRC safe probe of quenching of low-p_T jets:
 characterise fragment distributions and are sensitive to medium induced changes of intra-jet momentum flow

- ‘event-by-event’ measure, sensitive to fluctuations
Jet shapes as quenching signatures

• compare quarks and gluons: gluon jets broader and softer

• g is p_T weighted width of the jet:
 - broadening (collimation) \rightarrow enhanced (reduced) g

• $p_T D$ measures p_T dispersion:
 - less constituents / ‘more democratic’ splitting \rightarrow reduced $p_T D$

• LeSub characterises hardest splitting, insensitive against background
Analysis details

- charged jets from charged particle tracks, $p_{T}^{\text{const}} > 150$ MeV/c in pp MinB at 7 TeV and Pb-Pb 10% central at 2.76 TeV

- $R=0.2$, $40 < p_{T}^{\text{jet}} < 60$ GeV/c, no leading constituent cut

- novel background subtraction methods (Pb-Pb)
 - constituent subtraction (P. Berta et al, JHEP 1406 (2014) 092)

- 2D unfolding to correct for background fluctuations and detector effects
Jet shapes in pp

- fully corrected to charged particle level
- fair agreement with PYTHIA simulations: validates PYTHIA as reference for Pb-Pb
Jet shapes in Pb-Pb

- fully corrected to charged particle level
- g shifted to smaller values compared to PYTHIA reference → indicates more collimated jet core

![Graph showing jet shapes in Pb-Pb](image-url)

ALICE Preliminary

$\sqrt{s_{NN}} = 2.76$ TeV

Anti-k_T charged jets, $R = 0.2$

$40 < p_T^{\text{jet,ch}} < 60$ GeV/c

- ALICE Data
- Shape uncertainty
- Correlated uncertainty
- PYTHIA Perugia 11
• larger p_TD in Pb-Pb compared to PYTHIA
 → indicates fewer constituents in quenched jets

• LeSub in Pb-Pb in good agreement with Pb-Pb:
 → hardest splittings likely unaffected
• trends reproduced by JEWEL jet quenching model: collimation through emission of soft particles at large angles
Qualitative discussion

- characterise degree of dispersion and broadening in terms of ‘quark-like’ and ‘gluon-like’

- observed effects favour ‘quark-like’ scenario

- quenching mechanism or change of quark/gluon composition caveat: jet p_T not equal parton p_T
Qualitative discussion II

- jet quenching = jet p_T shift + vacuum fragmentation?

- if yes, would expect shapes to agree with vacuum shapes from higher p_T jets

- g agrees qualitatively with this picture, however $p_T D$ does not
Summary

- strangeness production in jets in Pb-Pb collisions
 - significant difference between the Λ/K^0_S ratio of inclusive particles and the ratio in charged jets

- measurement of jet shapes
 - characterise modifications of intra-jet momentum flow by QGP
 - results indicate that jet cores in Pb-Pb are narrower and harder and have fewer constituents than PYTHIA pp reference
 - results in qualitative agreement with quark-like fragmentation and described by quenching models like JEWEL
LHC run 2

- increased CMS energy for Pb-Pb collisions from 2.76 → 5.1 TeV
- quenching strength $\hat{q} \sim s \sim \varepsilon^{3/4}$
- expect (modest) increase in ε, T → measure energy density dependence of jet quenching
- note: also a dependence on parton ‘input spectrum’ (increased R_{AA} ???)

ALICE, PRL 105, 252301

Oliver Busch – TGSW 2015/09/30
ALICE in run 2: DCal

• run 2: DCal upgrade
 - significantly extended jet acceptance
 - back-to-back in azimuth (di-jet topology)
Jet structure

- ‘jet structure ratio’ R=0.2 / R=0.3 for charged jets
- sensitive to potential broadening of jet shape
- consistent with PYTHIA pp: no modification observed within small radii (jet core)
Jet reconstruction

• Establish correspondence between detector measurements / final state particles / partons

• two types of jet finder:
 - iterative cone
 - sequential recombination (e.g. anti-k_T)

• resolution parameter R

hep-ph/0802.1189
Uncertainties in the measurement

- **Tracking efficiency** uncertainty of ±4% dominates the Jet Energy Scale uncertainty.
- **Unfolding:**
 - **Regularization** variations of ±3 iterations.
 - **Truncation** of the measured yield at a 10 GeV lower value (10 and 20 GeV/c in pp and Pb-Pb resp.)
 - **Prior:** intrinsic correlation between $p_{T,\text{jet,part}}$ and $\text{shape}_{\text{part}}$ with which response is built.
 - Default is PYTHIA Perugia 0, variation is a smearing of such correlation by 20%.
- **Additional ingredient in Pb-Pb:** background subtraction method variation.

Leticia Cunqueiro