MC toy model calculation assuming net-proton distribution

Toshihiro Nonaka, University of Tsukuba CiRfSE workshop Jan.19, 2016

- Introduction
- Comparison with published net-proton results
- Importance of separated efficiencies
- Efficiency correction in case of arbitrary number of phase spaces
- Summary

Search for the critical point

- Beam Energy Scan program has been carried out at RHIC for searching the QCD critical point.
- One of observables is cumulant of conserved quantities.
- Net-charge, net-proton and net-kaon have been analyzed at STAR experiment.
- Cumulants are extensive variables, so the cumulant ratios have been measured as a function of beam energy.

statistical baseline

- Two independent Poisson distributions for positively and negatively charged particles.
- Observe deviations from Poisson baseline as a function of beam energy.

 $=\frac{\mu_1 - \mu_2}{\mu_1 + \mu_2}$

$$C_{1} = \mu_{1} - \mu_{2}$$

$$C_{2} = \mu_{1} + \mu_{2}$$

$$S\sigma = \frac{C_{3}}{C_{2}} = \frac{\mu_{1}}{\mu_{2}}$$

$$C_{3} = \mu_{1} - \mu_{2}$$

$$\kappa\sigma^{2} = \frac{C_{4}}{C_{2}} = 1$$

Jan.1

Published net-proton results

PRL112 032302 (2014)

- In order to start fluctuation analysis at STAR, published net-proton results have been reproduced at 200GeV.
- Difference of correction method with published analysis will be shown by MC toy models and analytical calculations.

Cumulant (eff.corrected)

charged particles are used. In case of odd order cumulants, the separate efficiency gives a different result

(~10% smaller) from the average

However, in case of even order cumulants, they have little difference.

Cumulant ratios

Difference between two correction methods is very small except for *S*σ.

MC toy model

- Also checked by MC toy model calculation assuming net-proton distribution in the most central collisions at 200GeV.
- · This is roughly consistent with the results shown in earlier pages.

Analytical calculation, C₁

shown by X.Luo

N±: # of produced particles
 M±: # of observed particles
 ε±: efficiency for charged or anti-charged particles
 ε : average efficiency

$$\Delta \epsilon$$
 : efficiency difference

$$egin{aligned} arepsilon_+ &= arepsilon + \Delta arepsilon, & arepsilon &= rac{arepsilon_+ + arepsilon_-}{2}, \ arepsilon_- &= arepsilon - \Delta arepsilon, & \Delta arepsilon &= rac{arepsilon_+ + arepsilon_-}{2}, \ arepsilon &= arepsilon - arepsilon_- & \Delta arepsilon &= rac{arepsilon_+ + arepsilon_-}{2}, \end{aligned}$$

$$K_{1,\text{sep}} = \langle N_{+} \rangle - \langle N_{-} \rangle = \frac{\langle M_{+} \rangle}{\varepsilon_{+}} - \frac{\langle M_{-} \rangle}{\varepsilon_{-}}$$

$$= \frac{\langle M_{+} \rangle}{\varepsilon + \Delta \varepsilon} - \frac{\langle M_{-} \rangle}{\varepsilon - \Delta \varepsilon}$$

$$K_{1,\text{sep}}(\Delta \varepsilon) \simeq K_{1,\text{sep}}(0) + \frac{\partial K_{1,\text{sep}}}{\partial \Delta \varepsilon} \Big|_{\Delta \varepsilon = 0} \Delta \varepsilon + \mathcal{O}(\Delta \varepsilon^{2})$$

$$= \left(\frac{\langle M_{+} \rangle}{\varepsilon} - \frac{\langle M_{-} \rangle}{\varepsilon}\right) - \left(\frac{\langle M_{+} \rangle}{\varepsilon^{2}} + \frac{\langle M_{-} \rangle}{\varepsilon^{2}}\right) \Delta \varepsilon + \mathcal{O}(\Delta \varepsilon^{2}).$$

$$= \frac{\langle M_{+} \rangle - \langle M_{-} \rangle}{\varepsilon}$$

$$\Delta K_{1} = |K_{1,\text{ave}} - K_{1,\text{sep}}|$$

$$= \left|\left(\frac{\langle M_{+} \rangle}{\varepsilon} - \frac{\langle M_{-} \rangle}{\varepsilon}\right) - \left(\frac{\langle M_{+} \rangle}{\varepsilon} + \frac{\langle M_{-} \rangle}{\varepsilon^{2}}\right) \Delta \varepsilon\right|$$

$$= \frac{\Delta \varepsilon}{\varepsilon^{2}} \left(\langle M_{+} \rangle + \langle M_{-} \rangle\right).$$

Difference $\Delta K1$ is proportional to the sum of multiplicity.

Analytical calculation, C₂

• Difference for C2 can be calculated by similar approach

$$K_{2,\text{sep}} = \left(\frac{\langle M_{+}^{2} \rangle}{(\varepsilon + \Delta \varepsilon)^{2}} + \frac{\langle M_{-}^{2} \rangle}{(\varepsilon - \Delta \varepsilon)^{2}}\right) - \left(\frac{\langle M_{+} \rangle}{(\varepsilon + \Delta \varepsilon)^{2}} + \frac{\langle M_{-} \rangle}{(\varepsilon - \Delta \varepsilon)^{2}}\right) - \left(\frac{\langle M_{+} \rangle^{2}}{(\varepsilon + \Delta \varepsilon)^{2}} + \frac{\langle M_{-} \rangle^{2}}{(\varepsilon - \Delta \varepsilon)^{2}}\right) + \left(\frac{\langle M_{+} \rangle}{\varepsilon + \Delta \varepsilon} + \frac{\langle M_{-} \rangle}{\varepsilon - \Delta \varepsilon}\right) - 2\frac{\langle M_{+} M_{-} \rangle}{(\varepsilon + \Delta \varepsilon)(\varepsilon - \Delta \varepsilon)} + 2\frac{\langle M_{+} \rangle \langle M_{-} \rangle}{(\varepsilon + \Delta \varepsilon)(\varepsilon - \Delta \varepsilon)}.$$

$$K_{2,\text{ave}} = \left(\frac{\langle M_{+}^{2} \rangle}{\varepsilon^{2}} + \frac{\langle M_{-}^{2} \rangle}{\varepsilon^{2}}\right) - \left(\frac{\langle M_{+} \rangle}{\varepsilon^{2}} + \frac{\langle M_{-} \rangle}{\varepsilon^{2}}\right) - \left(\frac{\langle M_{+} \rangle^{2}}{\varepsilon^{2}} + \frac{\langle M_{-} \rangle^{2}}{\varepsilon^{2}}\right) + \left(\frac{\langle M_{+} \rangle}{\varepsilon} + \frac{\langle M_{-} \rangle}{\varepsilon}\right) - 2\frac{\langle M_{+} M_{-} \rangle}{\varepsilon^{2}} + 2\frac{\langle M_{+} \rangle \langle M_{-} \rangle}{\varepsilon^{2}}.$$

$$\begin{split} K_{2,\mathrm{sep}}(\Delta\varepsilon) &\simeq K_{2,\mathrm{sep}}(0) + \frac{\partial K_{2,\mathrm{sep}}}{\partial \Delta\varepsilon} \Big|_{\Delta\varepsilon=0} \Delta\varepsilon + \mathcal{O}(\Delta\varepsilon^{2}). \\ &\simeq \frac{\langle M_{+}^{2} \rangle + \langle M_{-}^{2} \rangle}{\varepsilon^{2}} - 2 \Big(\frac{\langle M_{+}^{2} \rangle - \langle M_{-}^{2} \rangle}{\varepsilon^{3}} \Big) \Delta\epsilon - \frac{\langle M_{+} \rangle + \langle M_{-} \rangle}{\varepsilon^{2}} + 2 \Big(\frac{\langle M_{+} \rangle - \langle M_{-} \rangle}{\varepsilon^{3}} \Big) \Delta\epsilon \\ &- \frac{\langle M_{+} \rangle^{2} + \langle M_{-} \rangle^{2}}{\varepsilon^{2}} + 2 \Big(\frac{\langle M_{+} \rangle^{2} - \langle M_{-} \rangle^{2}}{\varepsilon^{3}} \Big) \Delta\epsilon + \frac{\langle M_{+} \rangle + \langle M_{-} \rangle}{\varepsilon} - 2 \Big(\frac{\langle M_{+} \rangle - \langle M_{-} \rangle}{\varepsilon^{2}} \Big) \Delta\epsilon \\ &- 2 \frac{\langle M_{+} M_{-} \rangle}{\varepsilon^{2}} + 2 \frac{\langle M_{+} \rangle \langle M_{-} \rangle}{\varepsilon^{2}} + \mathcal{O}(\Delta\varepsilon^{2}). \end{split}$$

$$\begin{split} \Delta K_{2} &= |K_{2,\mathrm{ave}} - K_{2,\mathrm{sep}}| \\ &\simeq \frac{2\Delta\varepsilon}{\varepsilon^{2}} \left[\frac{\langle M_{+} \rangle - \langle M_{-} \rangle}{\varepsilon} - \left(\langle M_{+} \rangle - \langle M_{-} \rangle \right) \right] \\ &\mathrm{represented by "net-charge" terms} \end{split}$$

Difference ΔK2 is proportional to the difference of multiplicity.

Analytical calculation, C₃

Difference for C3 can be also calculated by similar approach

$$K_{3,\text{sep}}(\Delta\varepsilon) = \frac{A_{+}}{\left(\varepsilon + \Delta\varepsilon\right)^{3}} - \frac{A_{-}}{\left(\varepsilon - \Delta\varepsilon\right)^{3}} - \frac{B_{+}}{\left(\varepsilon + \Delta\varepsilon\right)^{2}\left(\varepsilon - \Delta\varepsilon\right)} + \frac{B_{-}}{\left(\varepsilon + \Delta\varepsilon\right)\left(\varepsilon - \Delta\varepsilon\right)^{2}} + \frac{C_{+}}{\left(\varepsilon + \Delta\varepsilon\right)^{2}} - \frac{C_{-}}{\left(\varepsilon - \Delta\varepsilon\right)^{2}} + \frac{D_{+}}{\varepsilon + \Delta\varepsilon} - \frac{D_{-}}{\varepsilon - \Delta\varepsilon},$$

where constant terms are defined as

$$\begin{aligned} A_{\pm} &= \langle M_{\pm}^{3} \rangle + 2 \langle M_{\pm} \rangle - 3 \langle M_{\pm}^{2} \rangle - 3 \langle M_{\pm} \rangle \Big(\langle M_{\pm}^{2} \rangle - \langle M_{\pm} \rangle \Big) + 2 \langle M_{\pm} \rangle^{3}, \\ B_{\pm} &= 3 \langle M_{\pm}^{2} M_{\mp} \rangle - 3 \langle M_{\pm} M_{\mp} \rangle - 3 \langle M_{\mp} \rangle \Big(\langle M_{\pm}^{2} \rangle - \langle M_{\pm} \rangle \Big) - 6 \langle M_{\pm} \rangle \langle M_{\pm} M_{\mp} \rangle + 6 \langle M_{\pm} \rangle^{2} \langle M_{\mp} \rangle, \\ C_{\pm} &= 3 \Big(\langle M_{\pm}^{2} \rangle - \langle M_{\pm} \rangle^{2} - \langle M_{\pm} \rangle \Big), \\ D_{\pm} &= \langle M_{\pm} \rangle. \end{aligned}$$

$$\begin{aligned} \Delta K_3 &= K_{3,\text{ave}} - K_{3,\text{sep}} \\ &\simeq K_{3,\text{ave}} - \left[K_{3,\text{sep}}(0) + \frac{\partial K_{3,\text{sep}}}{\partial \Delta \varepsilon} \Big|_{\Delta \varepsilon = 0} \Delta \varepsilon + \mathcal{O}(\Delta \varepsilon^2) \right]. \\ &= -\frac{\partial K_{3,\text{sep}}}{\partial \Delta \varepsilon} \Big|_{\Delta \varepsilon = 0} \Delta \varepsilon + \mathcal{O}(\Delta \varepsilon^2) \\ &= \left[\frac{1}{\varepsilon^4} \Big[3(\underline{A}_+ + \underline{A}_-) - (\underline{B}_+ + \underline{B}_-) \Big] + \frac{2}{\varepsilon^3} (\underline{C}_+ + \underline{C}_-) + \frac{2}{\varepsilon^2} (\underline{D}_+ + \underline{D}_-) \Big] \Delta \varepsilon. \end{aligned}$$
represented by "multiplicity" terms

Difference ΔK3 is proportional to the sum of multiplicity.

Order dependence (7.7GeV)

· <M+>-<M-> becomes large at low energy

→ difference of even order is as large as odd order

<u>Beam energy dependence</u>

- Relative difference is calculated assuming parameters for each BES energy.
- There is less than 5% difference for $S\sigma$ at experimental interest region(~39GeV).
- · Conclusions of published paper won't be changed.

Efficiency correction in case of arbitrary number of phase space

- Efficiency correction method has been developed by V.Koch(PRC 86(2012) 044904) and M.Kitazawa(PRC (2012)86 024904).
- In recent net-proton analysis, phase space is divided into two phase spaces of protons, one is the low p_T region where only TPC is used for PID, the other is the high p_T region where TPC+TOF is used for PID.
- Efficiency correction method in case of 4(2+2) phase spaces has been established by X.Luo.

X.Luo, STAR Collaboration Meeting at Stony Brook University , June 1-6, 2015

- Efficiency correction in case of arbitrary number of phase spaces has been established by H.Masui, which is based on factorial moments, so that one can calculate cumulants easily by C++.
 See also : A.Bzdak and V.Koch PRC 91(2015)2,027901
- This might be useful to extend rapidity window more than [-0.5,+0.5] for net-proton, or to correct more accurately at the part of low p_T region for net-kaon and net-charge.

Simple MC toy model (3+3)

• Efficiency correction seems to work well.

Impose p_T spectra

- MC toy model including p_T dependence of efficiency, roughly assuming net-proton analysis.
- 3+3 is the best for C1, C2 and C3.
- Further study assuming net-charge or net-kaon analysis will be done.

CiRfSE workshop

- Importance of separated efficiencies was shown by MC toy models and analytical calculations.
 - → Summary of published net-proton paper don't seem to be change
- The number of phase spaces used for efficiency correction were increased to 3+3.

→ Further study including low p_T region will be done.

Event and track selection

Run10, √sNN=200GeV

Event selection

- IVzl<30cm
- Vr<2cm
- Request at least one TOF Matched tracks with β>0.1 within Refmult

statistical errors are estimated by bootstrap method(100 times)

Centrality determination

- · lηl<1.0
- gDCA<3.0
- nHitsFit>10
- if TOF matched
 - $n\sigma_p < -3\&\&m^2 < 0.4$
- else
 - nσ_p<-3

Track selection

- $\ln \sigma_p |<2$
- nHitsFit/nFitPoss > 0.52
- lyl<0.5
- 0.4<pT<0.8
- gDCA<1.0cm
- nHitsFit>20
- nHitsDedx>5