

Jet quenching and holography: experimental aspects

Oliver Busch

University of Tsukuba Heidelberg University

Jet quenching and holography: experimental aspects

(focus on light flavour energy loss)

Oliver Busch

University of Tsukuba Heidelberg University

Jet quenching and holography: experimental aspects

(focus on light flavour energy loss)

(not a comprehensive experimental summary)

Oliver Busch

University of Tsukuba Heidelberg University

Hadron nuclear modification factor

- high-p_T hadron as a proxy for jet: small experimental uncertainties, but often difficult to calculate for theory (fragmentation needed)
- experimental biases: high-z fragment, 'hard' fragmentation pattern

Jets in heavy-ion collisions

- jet reconstruction in heavy-ion collisions : high underlying event background from soft particles not related to hard scattering
- relevant scale for quenching effects likely T^{med} : several 100 MeV
- compromise between experimental uncertainties and physics significance
- parameters:
 - constituent p_T (150 MeV/c 2 GeV/c)
 - jet radius (0.2 0.5)
 - fragmentation biases (minumum leading constituent p_T, match to tracking jet, ...)
 - jet p_T (40 several 100 GeV/c)
 - (semi-)/inclusive (*ALICE JHEP 09 (2015) 170*)

Jet nuclear modification factor

JEWEL: PLB 735 (2014)

YaJEM:PRC 88 (2013) 014905

- \rightarrow further constraints needed, more differential measurements !

- strong suppression, similar to hadron RAA \rightarrow parton energy not recovered inside jet cone
- increase of suppression with centrality, weak p_T dependence
- JEWEL:
 - microscopic pQCD parton shower + gluon induced emissions
- YaJEM:
 - detailed fireball model
 - parameterisation of radiative and collisional energy loss
- different models reproduce observed jet suppression

Democratic branching ?

- democratic branching expected in strongly coupled energy loss (?)
- jet fragmentation measured by ATLAS, CMS: modest modification of jet fragmentation compared to pp
- high-z region seems unmodified / only weakly modified
- enhancement at low p_T
- also note CMS results for splitting functions (CMS-HIN-16-006)

Jet and high- p_T hadron v_2

- path-length dependence of energy loss:
 - elastic ~L
 - pQCD ~L²
 - strong coupling ~L³

CMS, PRL 109 (2012) 022 ATLAS, PRL 111 (2013) 152 ALICE, Phys. Lett. B753 (2016) 511 ALICE, Phys. Lett. B719 (2013) 18 JEWEL: K.C. Zapp, F. Kraus, U.A. Wiedemann, JHEP 1303 (2013) 080

v₂ described by JEWEL (pQCD based)

Oliver Busch – XIIth Quark Confinement and the Hadron Spectrum, Thessaloniki

Transverse jet profile

- transverse structure by CMS (p_T^{jet} ~100 GeV/c)
- girth (average transverse width) by ALICE (p_T^{jet} > 40 GeV/c)
- many other measurements ...

