MRPC-TOF DEVELOPMENT

CiRfSE Workshop Jan. 24, 2017 Kazuki Sato

RHIC-PHENIX memorial year 2016

O June

- RHIC-AGS meeting
- End of Run16 and all experiment

Daniel and Mickey celebrate end of run16 and PHENIX

TOF on East arm

O October

 Carry out TOF and super modules of RICH

TURA D A

• Prepare for shipping back

SiRfCE workshop 2017

J-PARC HEAVY ION PROGRAM

H. Sako et al. White paper for a Future J-PARC Heavy-Ion Program (J-PARC-HI)

Baryon Chemical Potential

Search low energy and high chemical potential area in QCD diagram by collisions with fixed target.

MULTI-GAP RESISTIVE PLATE CHAMBER × J-PARC

Towards the heavy-ion program at J-PARC (2014)

 $\square 60 \times 60 \text{ cm} \text{ large and } 30 \text{ ps} \text{ timing resolution is}$ required at 1m far from collision point!!

HOW MRPC WORKS

- 1. Charged particle injection
- 2. Avalanche by strong electric field
 - 3. Read induced signal from readout pads
- \checkmark Simple and reasonable materials.
- ✓ Easy to make larger one.
- \checkmark Timing resolution can be improved by stacking more gaps.

Match to requirements of Heavy-Ion program at J-PARC

MRPC STRUCTURE AND TYPICAL SETUP

MRPC FAMILY				
	small type	SONY type1	SONY type2	large type
Size: Read-pad width:	100 × 136 24	100 × 136 24	100 × 136 11	300 × 200 24
Gas gap width [µm] × number	165 × 6, 148 × 6, 128 × 7 104 × 9	260 × 5	260 × 5	165 × 6
Structure print board	4 stack FR-4	1 stack FR-4 + mylar film	1 stack FR-4 + mylar film	4 stack FR-4

X Designed by SONY GM & O corporation

POSITRON BEAM TEST AT ELPH IN TOHOKU UNIV.

Research Center for ELectron PHoton Science

BASIC PERFORMANCE

DATA EXTRACTION

5GHz flash ADC DRS4 Evaluation Board

T. Nonaka master thesis (2015)

10

1. QUALITY OF SIGNAL

2. EFFICIENCY (BEAM)

Efficiency

3. TIMING RESOLUTION (BEAM)

3. TIMING RESOLUTION (BEAM)

Best timing resolution

- type1: 85.4 ± 2.4 ps
- type2: 78.9 \pm 1.8ps thinner pad is better

4 stack with type2 can be 40ps??

4. TIMING RESOLUTION (COSMIC RAY)

small type

- \checkmark 104 μm performed the best these days.
- ✓ The best timing resolution ~50ps marked by 165μ m.

CONCLUSION

-Different type of MRPCs are designed and tested, with collaboration with SONY GM&O.

- Thinner read out pad has better timing resolution.

-The optimum operating voltage for small type is around 12kV as efficiency and timing resolution.

- The best timing resolution with beam is $67.4 \pm 2.8 ps$.
- Efficiency over 98%.

FUTURE WORKS

- Design preamp that can preform well for high frequency signal.
- Match impedance of preamp for SONY and large type.
- Test 4 stacked SONY-type2 MRPC and 104-µm gap MRPC with beam.

PICTURE BIBLIOGRAPHY

- PHENIX Focus Time Of Flight H.Masui
- White paper for a Future J-PARC Heavy-Ion Program (J-PARC-HI) May 27, 2016 H. Sako et al.
- □ J-PARC official web site <u>http://j-parc.jp/</u>
- ELPH–Tohoku University official web site http://hayabusa1.lns.tohoku.ac.jp/
- Towards the heavy-ion program at J-PARC Aug. 26th, 2014
 H.Sako et al.

BACK UP

Streamer

- Electron in atoms are excited
- Photon comes out when it come back to basic state
- Ionize cathode
- Delayed avalanche

DRS4の時差補正

先行研究

 4段型MRPC(ギャップ幅165μm)宇宙線を用いた実験で時間分解能 47.5 ± 3.4 ps を達成。

(2015年、筑波大学グループ、野中俊宏氏修士論文)

• 1段型MRPCでガスギャップ幅が狭くなるほど時間分解能が向上する傾向。

(2002年、LHC-ALICE、Addendum to the TDR of the Time Of Flight System)

How to Estimate Timing Resolution

読出し回路とガス・電圧

PMT: R3478 浜松ホトニクス シンチレータ: EJ-200 ELGEN Technology

セットアップ

- データ記録: DRS4 Evaluation Board version 3.0
 - 200ps間隔でサンプリングする回路。
 - USB端子からデジタルデータとして送信する。

Gas mixture dependence

in order to reduce the ratio of streamer event

• Enough amount gas reduces streamer and quenching gas

2. Rise time

Shape of Signal

Timing Resolution and Efficiency

白抜き四角が波高で閾値を決めたefficiency

マーカーが対応している 例えば赤丸白抜きの分解能を出すためには赤丸白抜きのefficiencyになってしまう

2. EFFICIENCY (BEAM)

 \checkmark The best efficiency of each MRPC is more than 95%

3. TIMING RESOLUTION (BEAM)

Best timing resolution – type1: 85.4 ± 2.4 ps – type2: 78.9 ± 1.8 ps

thinner pad is better

strong refection in large MRPC

NEED TO MATCH IMPEDANCE!!!