### Heavy-flavour measurements at LHC-ALICE

Shingo Sakai

# Heavy Flavour (HF) in pp, p-Pb & Pb-Pb

- Heavy-flavour (charm & beauty) production
  - Initial hard scatterings ( $M_{HF} >> \Lambda_{QCD}$ )
- pp collisions
  - Test for perturbative QCD (pQCD)
  - Reference for heavy ion collisions (both experiment & theory)
- Heavy ion collisions
  - Created in initial parton-parton scatterings
  - Traverse and interact with the hot & dense QCD matter
    - A good probe to study properties of the QCD matter
    - Energy loss  $(R_{AA})$ , collectivity  $(v_2)$ , hadronization

### pA collisions

- Control measurement for heavy ion collisions to disentangle initial from final state effects
  - Cold nuclear matter effect on heavy-flavour production

## Energy Loss of heavy flavours

- In-medium parton energy loss
  - Radiative energy loss (PLB 632, 81)
    - gluon bremsstrahlung
    - smaller energy loss for heavy than for light quarks due to "dead cone" effect (PLB 519 (2001) 199.)
    - energy loss depends on the colour charge and is larger for gluons than for quarks
  - Collisional energy loss (PLB 649, 139)

 $R^{\pi}_{AA} < R^{D}_{AA} < R^{B}_{AA}$ ?

- energy loss via elastic scattering
- Theoretical predictions:
  - mass & colour charge dependence of energy loss
  - $E_{loss}(g) > E_{loss}(u,d,s) > E_{loss}(c) > E_{loss}(b)$

Nuclear modification factor

 $R_{\rm AA}(p_{\rm T}) = \frac{d N_{\rm AA}/dp_{\rm T}}{\langle T_{\rm TA} \rangle \times d\sigma / dp_{\rm T}}$ 

# Azimuthal anisotropy of Heavy flavours

#### Elliptic flow

 $dN/d(\phi - \psi_{RP}) = ... + N_0(1 + 2v_2\cos(2(\phi - \psi_{RP}))) + ...$ 

- Transfer initial spatial anisotropy to momentum anisotropy
  - □ macroscopic: hydro model
    - => pressure gradient
  - microscopic
    - => scattering in the medium
- Low p<sub>T</sub>
  - coupling of heavy quarks with the medium and their thermalization
- Intermediate p<sub>T</sub>
  - Hadronization mechanism (recombination)
- High PT

Path-length dependence of energy loss



# Heavy-flavour measurements in ALICE



ALT-PERF-31572

### HF production (c,b->l) in pp collisions



### HF production (D mesons) in pp collisions



• D meson productions in pp collisions at 7 TeV are consistent with pQCD calculations

# Initial state effects: p-A collisions

### Heavy-flavour in p-A collisions

 control measurement for heavy-ion collisions to disentangle initial (cold nuclear matter effects) from final state effects

### Cold nuclear matter effects

 nuclear modification of Parton distribution Functions (PDF): shadowing or gluon saturation

K.J. Eskola et al., JHEP 0904(2009)65 H. Fuji & K. Watanabe, NPA 915 (2013) 1

- energy loss I.Vitev et al., PRC 75(2007) 064906
- k<sub>T</sub> broadening (Cronin enhancement)
- multiple collisions

A.M. Glenn et al., PLB 644(2007)119



 $R_{pPb}(p_{\rm T}) = \frac{d N_{\rm pPb}/dp_{\rm T}}{\langle T_{\rm AA} \rangle \times d\sigma_{\rm T}/dp_{\rm T}}$ 

# Initial state effects on heavy-flavour productions



No Significant cold nuclear matter effects on heavy-flavour production
A small suppression at low pT is consistent with models included PDF

# HF productions (c,b->e) in PbPb collisions at 2.76 TeV



- ALT-PUB-114073 suppression of heavy-flavour production in most-central collisions
  - Energy loss of heavy quarks in the dense QCD matter
- Less suppression in peripheral collisions

# HF productions (c,b->l) in PbPb collisions at 2.76 TeV



- ALI-PUB-114077
  - Similar suppression between mid (electrons) and forward (muon) rapidity
     No significant y dependence of heavy flavour productions

## D mesons in central Pb-Pb collisions



- Strong suppression of D meson production in most central (0-20%) collissions
- Less suppress from central to peripheral
- Similar suppression of light hadrons
- Larger suppression than non-prompt J/ps (B decays)

# Azimuthal anisotropy of $e^{\rm HF}$ and $\mu^{\rm HF}$

 $e^{HF}$  : arXiv: 1606.00321,  $\mu HF$ : PLB 753 (2016) 41-56



- Non-zero  $v_2$  of  $e^{HF}$  at |y| < 0.7 and  $\mu^{HF}$  at 2.5 < y < 4
  - the magnitude is compatible in mid- and forward-rapidities
- $v_2$  of  $e^{HF}$  measured from  $p_T > 0.5 \text{ GeV}/c$ 
  - similar  $p_T$  dependence to other light hadron  $v_2$

|3

# Azimuthal anisotropy of D mesons

#### PRC 90 (2014) 034904



- Non zero D  $v_2$  at low  $p_T$
- Tends to get large from central (0-10%) to mid-central (30-50%)
  - Hydrodinamical behavior
- Consistent with charged particle v<sub>2</sub>
- Heavy quarks participate collective expansion in the QCD matter

|4

# Comparison with models (1)



#### Theoretical calculations

- initial: with/without cold nuclear matter from PDF
- medium modeling: Hydro, Glauber, parton transportation
- Interaction: radiative, collisional, resonant interaction
- hadronization: fragmentation, coalesenc

BAMPS: J. Phys. G 38 (2011) 124152, POWLANG: Eur. Phys. J C 71(2011)1666, UrQMD: arXiv:1211.6912,J. Phys. Conf. Ser. 426,012032(2013), TAMU: Phys. Rev. C 86 (2012) 014903, WHDG: J. Phys. G38(2011)124114, Aichelin: Phys. Rev. C79(2009)044906, J. Phys. G37(2010)094019 Cao,Qin, Bass: arXiv:1308.0617

# Comparison with models (2)



- Theoretical calculations
  - initial: with/without cold nuclear matter from PDF
  - medium modeling: Hydro, Glauber, parton transportation
  - Interaction: radiative, collisional, resonant interaction
  - hadronization: fragmentation, coalesence
- Large suppression and non-zero  $v_2$  (at low  $p_T$ ) are represented by models, but simultaneous reproduction of the  $R_{AA}$  and  $v_2$  is challenging

|6

# Summary

- Heavy-flavour measurements at LHC-ALICE
  - Studies by measuring leptons from charm and beauty decays and D
- The productions are well described by pQCD calculations in pp collisions
- Cold nuclear matter effects is very small on heavy-flavour productions
- Pb-Pb collisions
  - Strong suppression of heavy-flavour productions
    - Clear indication for substantial energy loss of charm and beauty in the hot
       No rapidity and energy dependence
  - Non-zero & centrality dependence of v<sub>2</sub>
    - Suggest strong re-interaction in the medium
- Heavy flavours observed to be significantly affected by hot and dense QCD medium
- Outlook at Run2: beauty (e, non-prompy J/psi), heavy-flavour jet,

heavy-flavour correlations