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Motivation

2

✓ Lattice calculations predict a “smooth crossover” at μB=0.  
Y. Aoki, Nature 443, 675(2006)

✓ Theoretically the six order cumulant of net-baryon and net-charge 
fluctuation change sign near the chiral phase transition. 

Friman et al, Eur. Phys. J. C (2011) 71:1694
✓ Find an experimental evidence for the phase transition with 

measurement of the sixth order cumulant at the STAR experiment.

Friman et al, Eur. Phys. J. C (2011) 71:1694

✦ Can we observe the 
negative value?
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Higher order fluctuations
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✓ Moments : Mean(M), sigma(σ), skewness(S) and kurtosis(κ).
✓ S and κ are non-gaussian fluctuations.

κ > 0

κ < 0

skewness→asymmetry kurtosis→sharpness

from wikipedia
✓ Cumulant ⇄ Moment

✓ Cumulant : additivity

Volume dependence

✦ Moments and Cumulants are mathematical measures of “shape” 
of a histogram which probe the fluctuation of observables.
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Fluctuations of conserved quantities
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(1) Sensitive to correlation length

(2) Direct comparison with susceptibilities.

Volume dependence can be canceled by taking ratio.

M. Cheng et al, PRD 79, 074505 (2009)

✦ Net-baryon, net-charge and net-strangeness

No. of positively charged 
particles in one collision

No. of negatively charged 
particles in one collision

“Net” : positive - negative

→neutrons cannot be measured

Fill in histograms 
over many collisions

X. Luo, CiRfSE workshop 2016 
@Tsukuba University
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Solenoidal Tracker At RHIC

✓ Large & uniform acceptance
(full azimuth, |η|<1)

✓ Excellent particle identification

TPCTOF

VPD
BBC

BEMC

EEMC
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Proton identification
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✓ dE/dx measured with TPC is used for proton 
identification at 0.4<pT<0.8 GeV/c

✓ The combined PID with m2 from TOF is used at 
0.8<pT<2.0 GeV/c.

STAR preliminary

STAR preliminary
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Analysis technique
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1. Centrality determination

2. Centrality Bin Width Correction

3. Statistical error calculation

Use charged particles except protons in 
order to minimize the autocorrelation.

Calculate cumulants at each multiplicity bin 
in order to suppress the volume fluctuation.

Analysis : |y|<0.5, p and pbar
Centrality : |η|<1.0, exclude p and pbar

X.Luo et al. J. Phys.G40,105104(2013)

B. Efron,R. Tibshirani, An introduction to the bootstrap, 
Chapman & Hall (1993).

✓ Bootstrap
✓ Delta theorem

Data
Glauber

χ2/NDF=1.9

Refmult3

STAR preliminary

X.#Luo#and#N.#Xu,#arXiv:#1701.02105
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Efficiency correction
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with s

0
i

= 1 + p

i

(s
i

� 1). From Eq. (52), one finds that @(a)K̃f = @(ap)Kf and

@(a)Kf = @(a/p)K̃f , @(a)@(b)Kf = @(a/p)@(b/p)K̃f , (53)

and so forth, where it is understood that s = 1 is substituted and @(a/p) =
P

M

i=1(ai/pi)(@/@si). Equation (53)

connects the factorial cumulants of P̃ (n) and P (n).
For the e�ciency correction, one must represent the cumulants of P (n) by those of P̃ (n). Similar to the procedure

in Sec. II, these relations are obtained by the following steps:

1. Convert a cumulant of P (N) into factorial cumulants.

2. Convert the factorial cumulants of P (N) into factorial cumulants of P̃ (N).

3. Convert the factorial cumulants of P̃ (N) into cumulants.

The explicit manipulation up to the third order is shown as follows:

hQ(a)ic = hQ(a)ifc = hq(a/p)ifc = hq(a/p)ic, (54)

hQ2
(a)ic = hQ2

(a)ifc + hQ(a2)ifc = hq2(a/p)ifc + hq(a2
/p)ifc

= hq2(a/p)ic � hq(a2
/p

2)ic + hq(a2
/p)ic, (55)

hQ3
(a)ic = hQ3

(a)ifc + 3hQ(a)Q(a2)ifc + hQ(a3)ifc = hq3(a/p)ifc + 3hq(a/p)q(a2
/p)ifc + hq(a3

/p)ifc
= hq3(a/p)ic � 3hq(a/p)q(a2

/p

2)ic + 2hq(a3
/p

3)ic + 3
�
hq(a/p)q(a2

/p)ic � hq(a3
/p

2)ic
�
+ hq(a3

/p)i, (56)

where we defined the linear combination of n
i

as

q(a) =
MX

i=1

a

i

n

i

, q(ab/p) ⌘
MX

i=1

(a
i

b

i

/p

i

)n
i

, (57)

and so forth. The explicit results up to the sixth order are given by
⌦
Q

↵
c
= hq(1,1)ic, (58)

⌦
Q

2
↵
c
= hq2(1,1)ic + hq(2,1)ic � hq(2,2)ic, (59)

⌦
Q

3
↵
c
= hq3(1,1)ic + 3hq(1,1)q(2,1)ic � 3hq(1,1)q(2,2)ic + hq(3,1)ic � 3hq(3,2)ic + 2hq(3,3)ic, (60)

⌦
Q

4
↵
c
= hq4(1,1)ic + 6hq2(1,1)q(2,1)ic � 6hq2(1,1)q(2,2)ic + 4hq(1,1)q(3,1)ic + 3hq2(2,1)ic

+3hq2(2,2)ic � 12hq(1,1)q(3,2)ic + 8hq(1,1)q(3,3)ic � 6hq(2,1)q(2,2)ic
+hq(4,1)ic � 7hq(4,2)ic + 12hq(4,3)ic � 6hq(4,4)ic, (61)

⌦
Q

5
↵
c
= hq5(1,1)ic + 10hq3(1,1)q(2,1)ic � 10hq3(1,1)q(2,2)ic + 10hq2(1,1)q(3,1)ic � 30hq2(1,1)q(3,2)ic

+20hq2(1,1)q(3,3)ic + 15hq2(2,2)q(1,1)ic + 15hq2(2,1)q(1,1)ic � 30hq(1,1)q(2,1)q(2,2)ic
+5hq(1,1)q(4,1)ic � 35hq(1,1)q(4,2)ic + 60hq(1,1)q(4,3)ic � 30hq(1,1)q(4,4)ic
+10hq(2,1)q(3,1)ic � 30hq(2,1)q(3,2)ic + 20hq(2,1)q(3,3)ic
�10hq(2,2)q(3,1)ic + 30hq(2,2)q(3,2)ic � 20hq(2,2)q(3,3)ic
+hq(5,1)ic � 15hq(5,2)ic + 50hq(5,3)ic � 60hq(5,4)ic + 24hq(5,5)ic, (62)

⌦
Q

6
↵
c
= hq6(1,1)ic + 15hq4(1,1)q(2,1)ic � 15hq4(1,1)q(2,2)ic + 20hq3(1,1)q(3,1)ic � 60hq3(1,1)q(3,2)ic

+40hq3(1,1)q(3,3)ic � 90hq2(1,1)q(2,2)q(2,1)ic + 45hq2(1,1)q2(2,1)ic + 45hq2(1,1)q2(2,2)ic
+15hq3(2,1)ic � 15hq3(2,2)ic + 15hq2(1,1)q(4,1)ic � 105hq2(1,1)q(4,2)ic + 180hq2(1,1)q(4,3)ic � 90hq2(1,1)q(4,4)ic
�45hq2(2,1)q(2,2)ic + 45hq2(2,2)q(2,1)ic + 60hq(1,1)q(2,1)q(3,1)ic � 180hq(1,1)q(2,1)q(3,2)ic
+120hq(1,1)q(2,1)q(3,3)ic � 60hq(1,1)q(2,2)q(3,1)ic + 180hq(1,1)q(2,2)q(3,2)ic � 120hq(1,1)q(2,2)q(3,3)ic
+6hq(1,1)q(5,1)ic � 90hq(1,1)q(5,2)ic + 300hq(1,1)q(5,3)ic � 360hq(1,1)q(5,4)ic + 144hq(1,1)q(5,5)ic
+15hq(2,1)q(4,1)ic � 105hq(2,1)q(4,2)ic + 180hq(2,1)q(4,3)ic � 90hq(2,1)q(4,4)ic
�15hq(2,2)q(4,1)ic + 105hq(2,2)q(4,2)ic � 180hq(2,2)q(4,3)ic + 90hq(2,2)q(4,4)ic
+10hq2(3,1)ic � 60hq(3,1)q(3,2)ic + 40hq(3,1)q(3,3)ic + 90hq2(3,2)ic � 120hq(3,2)q(3,3)ic + 40hq2(3,3)ic
+hq(6,1)ic � 31hq(6,2)ic + 180hq(6,3)ic � 390hq(6,4)ic + 360hq(6,5)ic � 120hq(6,6)ic,

(63)

✦ Nonaka, Kitazawa, Esumi : arXiv 1604.06212
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where we used

q(r,s) = q(ar
/p

s) =
MX

i=1

(ar
i

/p

s

i

)n
i

. (64)

In Eqs. (58)–(63), the cumulants of P (N) are expressed in terms of the (mixed) cumulants of P̃ (n). These formulas
thus can be used for the e�ciency correction. We note that the number of cumulants does not depends on the number
of e�ciency bins M . This property is contrasted to the method proposed in Refs. [14, 15], in which the number of
expectation values to be calculated increases as ⇠ M

m for mth order cumulant. The numerical cost for the e�ciency
correction with Eqs. (58)–(63) thus is drastically reduced compared to the formulas proposed in Refs. [14, 15] for large
M . In the formulas proposed in Ref. [16], the number of terms is much more reduced compared to Eqs. (58)–(63)
and thus the numerical cost is smaller than our method. However, the derivation in Ref. [16] is complicated and it is
quite di�cult to extend the analysis in Ref. [16] to sixth and much higher orders. We have numerically verified that
our method gives completely the same result as those in Refs. [14, 15] and Ref. [16]. In actual analyses, it would be
convenient to implement the derivation of Eqs. (58)–(63) as a numerical algorithm.

C. Mixed cumulants

So far, we considered the e�ciency correction of the cumulants of a single charge Q(a). Exactly the same dis-
cussion can be applied to the e�ciency correction of mixed cumulants, which probe correlations between di↵erent
conserved quantities, e.g, net-baryon, net-strangeness, and net-charge. Below we show the formulas for mixed cumu-
lants

⌦
Q

m1

(x)Q
m2

(y)

↵
up to fourth order (m1 +m2 5 4):

hQ(x)Q(y)ic = hq(1,0,1)q(0,1,1)ic + hq(1,1,1)ic � hq(1,1,2)ic, (65)

hQ2
(x)Q(y)ic = hq2(1,0,1)q(0,1,1)ic + 2hq(1,0,1)q(1,1,1)ic � 2hq(1,0,1)q(1,1,2)ic + hq(0,1,1)q(2,0,1)ic � hq(0,1,1)q(2,0,2)ic

+hq(2,1,1)ic � 3hq(2,1,2)ic + hq(2,1,3)ic, (66)

hQ2
(x)Q

2
(y)ic = hq2(1,0,1)q2(0,1,1)ic

+hq2(1,0,1)q(0,2,1)ic � hq2(1,0,1)q(0,2,2)ic + hq2(0,1,1)q(2,0,1)ic � hq2(0,1,1)q(2,0,2)ic
+4hq(1,0,1)q(0,1,1)q(1,1,1)ic � 4hq(1,0,1)q(0,1,1)q(1,1,2)ic
+2hq(1,0,1)q(1,2,1)ic � 6hq(1,0,1)q(1,2,2)ic + 4hq(1,0,1)q(1,2,3)ic
+2hq(0,1,1)q(2,1,1)ic � 6hq(0,1,1)q(2,1,2)ic + 4hq(0,1,1)q(2,1,3)ic
�4hq(1,1,1)q(1,1,2)ic + 2hq2(1,1,1)ic + 2hq2(1,1,2)ic
+hq(2,0,1)q(0,2,1)ic � hq(2,0,1)q(0,2,2)ic � hq(2,0,2)q(0,2,1)ic + hq(2,0,2)q(0,2,2)ic
+hq(2,2,1)ic � 7hq(2,2,2)ic + 12hq(2,2,3)ic � 6hq(2,2,4)ic, (67)

hQ3
(x)Q(y)ic = hq3(1,0,1)q(0,1,1)ic

+3hq2(1,0,1)q(1,1,1)ic � 3hq2(1,0,1)q(1,1,2)ic + 3hq(2,0,1)q(1,0,1)q(0,1,1)ic � 3hq(2,0,2)q(1,0,1)q(0,1,1)ic
+3hq(1,0,1)q(2,1,1)ic � 9hq(1,0,1)q(2,1,2)ic + 6hq(1,0,1)q(2,1,3)ic
+3hq(2,0,1)q(1,1,1)ic � 3hq(2,0,1)q(1,1,2)ic � 3hq(2,0,2)q(1,1,1)ic + 3hq(2,0,2)q(1,1,2)ic
+hq(3,0,1)q(0,1,1)ic � 3hq(3,0,2)q(0,1,1)ic + 2hq(3,0,3)q(0,1,1)ic
+hq(3,1,1)ic � 7hq(3,1,2)ic + 12hq(3,1,3)ic � 6hq(3,1,4)ic, (68)

where we used the symbol

q(r,s,t) = q(xr
y

s
/p

t) =
MX

i=1

(xr

i

y

s

i

/p

t

i

)n
i

. (69)

IV. TWO-DISTRIBUTION MODEL

In the rest of this paper we focus on the e↵ect of using the averaged e�ciency for di↵erent e�ciency bins. In this
section, we first consider a simple problem which can be treated analytically.
We consider a measurement of two kinds of particle number distributions P (NA) and P (NB) by detectors having

di↵erent e�ciencies "A and "B, respectively. We assume that the two distributions are equivalent and independent,

M :"#"of"efficiency"bins
n :"#"of"particles
p :"efficiency
a :"electric"charge

✓ Formulas derived via simple relationships between cumulants 
and factorial cumulants, which can drastically reduce calculation 
cost compared to usual formulas using factorial moments.
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Efficiency correction
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y

Φ

Φ

antiproton

→ Bad → Good Efficiency
Efficiency

proton

pr
ot
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 e
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cy

✓ It is important to apply efficiency correction with many efficiency bins in 
electric charge, pT and phi. 

✓ Using averaged efficiency would give wrong values for cumulants if there 
are different physics in different efficiency bins. arXiv 1604.06212

✓ Azimuthal dependence of efficiency as well as pT dependence have been 
corrected.

STAR 
Preliminary

STAR Preliminary
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pT and rapidity dependence
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✓ ~160M events from the 
central trigger in Run10

✓ C4/C2 shows the 
monotonic decrease as a 
function of pT and 
rapidity, which is 
predicted by baryon 
number conservation 
effect.

✓ C6/C2 shows opposite pT 
dependence for 0-5% and 
5-10% centralities, with 
large errors.

✓ C6/C2 shows no rapidity 
dependence within errors.

0.4$<$pT <$X$(GeV/c) |y|$<$X

1 1.5 2
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0.8

1

0.1 0.2 0.3 0.4 0.5
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1
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5-10%
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5-10%, eff.uncor
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40−
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2

|y|<0.5 0.4<pT<2.0 (GeV/c)

STAR Preliminary
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Centrality dependence
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✓ Results from Run10 central trigger and Run11 minimum bias 
trigger are combined in order to reduce statistical errors.

✓ From peripheral to central collisions, the values of C6/C2 seem 
to decrease.

✓ Statistical uncertainties are large.
partN

0 100 200 300
600−

400−

200−

0

200

400

partN
0 100 200 300

2
/C 6C

20−

10−

0

10

partN
0 100 200 300

2
/C 6C

40−

30−

20−

10−

0

10

20

Run10+Run11
Run10, Central trigger
Binomial
zero

STAR Preliminary 0-10% 10-80%

Run10 160M 200M

Run11 50M 450M

➡ Number of events 
used in analysis. 
0-10% in Run10 is 
from central trigger, 
while others are from 
minimum bias trigger.

0-10%

0-5%
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Summary and Outlook
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✦ We present the corrected results of C6/C2 of net-
proton multiplicity distributions at √sNN = 200 GeV in 
Au+Au collisions as a function of centrality, pT and 
rapidity.

✦ C6/C2 shows negative values from peripheral to 
central collisions systematically. 

✦ STAR has collected a few billion event statistics in 
2014 and 2016. Results from those data sets will also 
be merged to reduce statistical errors and derive more 
definite physics messages.
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Multiplicity dependent efficiency
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averaged

slope

mean of Poisson

event by event ε0 ε’ <N>
proton 0.7 -0.0003 12

antiproton 0.68 -0.0003 10

✓ Two Poisson distributions are generated for p and pbar, and randomly sampled according 
to Binomial efficiencies.

✓ Efficiency is calculated event by event based on the equation above.
✓ Efficiency correction using averaged efficiency ε0
✓ 1B events are proceeded. This is repeated with 30 times to estimate statistical errors.
✓ Relative deviation from Skellam expectation is shown.

C1 C2 C3 C4 C4/C2

Δ
C

n=
(C

n-S
ke

lla
m

)/S
ke

lla
m

C5 C6 C6/C2

✦ Finite deviation for 2nd to 4th cumulants and ratio.
✦ Deviations cannot be observed due to large errors 

for 5, 6 order cumulants and ratio.


