Measurements of 1st, 2nd and 3rd azimuthal anisotropy in Cu+Au collisions

> TAC seminar May 26th 2016

Hiroshi Nakagomi High Energy Nuclear Physics Group

✓Introduction

- Quark Gluon Plasma(QGP)
- Azimuthal anisotropy
- CuAu collisions

✓Experiment/Analysis

- PHENIX
- Centrality, event plane
- Simulation

✓ Results/Discussions

- System size dependence
- Rapidity dependence
- Theory comparison

√Summary

Introduction 3

Introduction

Quark Gluon Plasma(QGP)

QGP is a state of nuclear matter

- extremely high temperature, density
- consist of asymptotic free quarks and gluons
- Almost perfect liquid

Predicted phase transition ϵ_c and T_c by Lattice QCD calculation

- T_c ~ 170 MeV
- ε_c ~ 1 [GeV/fm³]

Introduction 5

Relativistic Heavy Ion Collider(RHIC)

	- martin	
the second se	Species	Energies
	Au+Au	200, 130, 62.4GeV
	>	39, 27, 22.4GeV
PHENIX KHIU		19.6 14.6, 7.7GeV
	Cu+Cu	200, 62.4, 22.4GeV
	U+U	193GeV
The second with the second sec	Cu+Au	200GeV
BOOSTER G-2	📉 3He+Au	200GeV
LINAC	d+Au	200GeV
The second	💽 p+Au	200GeV
	p+Al	200GeV
TANDEMS	p+p	510, 500, 200GeV
	Character and the second secon	62.4GeV
	Wide range of species and energies	
	Relativistic heavy ion collision	
	is unique tool to form QGP	
	Au+Au 200GeV@RHIC	
	- ε _{Βj} ~ 5 [GeV/fm ³] > ε _c	
PHENIX		

Introduction 6

 $(1/S) dN_{ch}/dy (fm)$

Azimuthal anisotropy: Elliptic flow

Azimuthal anisotropy: Directed, Triangular flow

Event by event, initial participant fluctuation can lead to -Directed particle production anisotropy v₁ -Triangular particle production anisotropy v₃ -V₄, V₅, V₆

Introduction 8

vn constrain initial condition & viscosity

v2, v3 are sensitive to initial condition and viscosity of QGP - Theoretically, initial condition and viscosity have uncertainty ->v_n are good constraint of both of them

η dependence of v_2 with different initial conditions

Introduction

Introduction 10 Initial condition on target and projectile nuclei

PhysRevC.90.034915

✓Initial spatial anisotropy on target and projectile nuclei are same event

-Symmetric v_n(η)

$$\varepsilon_n(+\eta) = \varepsilon_n(-\eta)$$

$$v_n(+\eta) = v_n(-\eta)$$

Introduction 11 Initial condition on target and projectile nuclei

✓ Initial conditions on target and projectile nuclei are not same event $\epsilon_n(+\eta) > \epsilon_n(-\eta)$ $v_n(+\eta) > v_n(-\eta)$ (Theory products the two different initial condition

Theory predicts the two different initial conditions survives collective expansion

Cu+Au collision

So far, vn have been studied in symmetric collision systems First asymmetric Cu+Au collisions were operated in 2012

Asymmetric initial condition provides

- Different left/right pressure gradient, particle production....
- Longitudinally, above characteristics could be different in Augoing/Cu-going
- -> Measurement of vn in asymmetric system could be good study of initial condition

M1~M2 (2011~2013)	D1(2013~2014)
Repair VTX @BNL JPS Spring & Fall (Talk) QM2012 (poster) ATHIC 2012 (Talk)	Repair VTX @BNL Shift taking & detector expert for Run 13, Run14
AuAu flow analysis using VTX	CuAu flow analysis
D2 (2014~2015)	D3(2015~2016)
QM2014(Talk) JPS-DNP(Talk) Shift taking & detector expert for Run 14, Run15	QM2015(Poster) TGSW2015 (Talk) WWND2016(Talk) Submit CuAu flow paper to arXiv
D4 (2016~)	Domestic conference Inter national conference Hardware and shift

Experiment/Analysis 14

Experiment Analysis

PHENIX detectors

Trigger, centrality, collision vertex -Beam Beam counter(BBC) (3<|η|<4)

- -Zero degree calorimeter
- -Shower max detector

Charged particle Tracking -Drift Chamber(DC) (|η|<0.35) - Momentum -Pad Chamber(PC) (|η|<0.35) - Hit position -Electro magnetic calorimeter(EMC) (|η|<0.35) - Hit position

Collision centrality

√Overlap zone of two nuclei

- Impact parameter
- Number of participant nucleons
- Multiplicity
- ✓ Experimentally, overlap zone is classified by multiplicity in Bbc
 - Multiplicity in Bbc

 - \propto Overlap zone
 - ✓ Each percentile contains same number of events
 - Most central collision 0 %
 - Most peripheral collisions 100%

Anisotropy measurement via Event Plane method

Experiment/Analysis 17

Event plane(EP) method

- one of the flow measurement methods
- produced particles are measured with respect to EP
- EP is the azimuthal direction most particles are emitted to
- observed vn is corrected by EP resolution

Experiment/Analysis 18

Event plane detectors and resolutions

50 0

Event Plane detectors

- 2nd, 3rd Event plane
 - Bbc, Cnt
- 1st Event plane
 - Bbc, Smd

0.3

{^иљ}о.2

0.1

10

20

30

Centrality(%)

40

Event Plane resolution -Estimated from EP correlations(3sub method)

 $\text{Res}\{\Psi_i\}$

 $Res\{\Psi_{n,A}^{obs}\} = \left\langle \cos(n[\Psi_n^{obs} - \Psi_n^{true}]) \right\rangle$

60 0

20

30

10

Centrality(%)

40

20

Centrality(%)

v_n measurement at Bbc(3<| η |<4)

- $\sqrt{v_n}$ is measured using 64 Bbc pmts
 - Bbc can't reconstruct tracks
 - pmt based v_n include back ground

Run Giant simulation with PHENIX configuration - pmt based v_n -> track based v_n

$$v_n^{track} = R_n * v_n^{pmt}$$

$$R_n = \frac{v_{n,input}^{\text{orm}}}{v_{n,output}^{Sim}}$$

Sim

 $v_{n,input}^{Sim}$ Input vn from particle simulation

Output vn from Giant simulation

 $v^{\mathfrak{sim}}$

'n,output

✓ Correction factor Rn

- $-R_2: 0.73$
- R₃: 0.65
- ✓ Systematic study -dN/deta
 - pT spectra
 - vn(pt)
 - vn(eta)

Initial spatial anisotropy

Glauber Monte Carlo simulation -Wood Saxon density profile

- collision is occurred, if $d < \sqrt{(\sigma_{nn}/\pi)}$ d:distance between nucleons σ_{nn} :total cross section(pp collision)

$$\epsilon_n = \frac{\left\langle r^2 \cos[n(\phi - \Psi_{n,PP})] \right\rangle}{\left\langle r^2 \right\rangle}$$
$$\Psi_{n,PP} = \frac{1}{n} \left[\tan^{-1} \frac{\left\langle r^2 \sin(n\phi) \right\rangle}{\left\langle r^2 \cos(n\phi) \right\rangle} + \pi$$

0.9

0

20

30

centrality[%]

10

50

60

40

Centrality dependence of ϵ_n $\epsilon_2:CuCu>CuAu~AuAu$ $\epsilon_3:CuAu>AuAu$ $\epsilon_3:CuAu>AuAu$ $\epsilon_3:CuAu>AuAu$

Results Discussions

- **v**₁,**v**₂,**v**₃ at mid-η
- v₂,v₃ at large-η
- v₁,v₂,v₃ theory comparison

Charged hadron v₁

Sizable v1 at mid-rapidity is observed for 10-50% High pt particle are emitted to Au side -Magnitude decreases from central to more peripheral events -In peripheral events, Left/Right path length becomes similar

Charged hadron v₂

Similar p_T and centrality dependence of v_2 as seen in symmetric collisions

- Strong centrality dependence, magnitude increase from central to peripheral

Charged hadron v₃

Similar pT and centrality dependence of v3 as seen in symmetric collisions

- Weak centrality dependence, magnitude slightly increase from central to peripheral

ε₂N_{part}^{1/3} scaling

System size dependence of v₂

 v_2 for different systems has similar centrality and pT dependence v_2 in CuAu is always between those in AuAu and CuCu Except in 0-10%, v_2 are not ordered according to ε_2

System size dependence of v₂

->System size contribute magnitude of v₂

Scaling v₂ with ε₂*N_{part}^(1/3)

System size dependence of v₃

arxiv:1509.07784

v₃ for different systems has weak centrality dependence v₃ in CuAu is always bigger than those in AuAu Unlike v₂, v₃ are ordered according to ε₃ ->v₃ doesn't depend on system size

Results/Discussions 30

System size dependence of v₃

arxiv:1509.07784

 v_3 scaled with ϵ_3 for Unlike $v_{2,}$ scaled v_3 are good agreement between AuAu and CuAu -For 0-10%, the deviation is seen pT>(2.5GeV/c)

Results/Discussions 31

Scaling v3 with ε3*Npart^(1/3)

arxiv:1509.07784

 v_3 is scaled with $\varepsilon_3 N_{part}^{(1/3)}$

- $N_{part}^{(1/3)}$ is proportional to length scale or expansion time $\epsilon_3 N_{part}^{(1/3)}$ scaling works well in v_3 !

Results Discussions

- v₁,v₂,v₃ at mid-η
- v₂,v₃ at large-η
- v₁,v₂,v₃ theory comparison

System size dependence of v₂ at F/B

Centrality dependence of v₂ is seen for all collision systems In CuAu collisions,

-central & peripheral collisions: v2(Au-going) ~ v2(Cu-going)
 -mid-central collisions : v2(Au-going) > v2(Cu-going)
 ->caused by different initial geometries in Au and Cu ?

Calculation of E2,Au and E2,Cu

In CuAu, $\epsilon_{2,Cu}$ and $\epsilon_{2,Au}$ calculated by Cu and Au nucleons separately.

- $\epsilon_{2,Cu}$ and $\epsilon_{2,Au}$ are determined with respect to Ψ_{PP}
- Ψ_{PP} is determined by all participant nucleons
- $\epsilon_{2,Au} > \epsilon_{2,CuAu} > \epsilon_{2,Cu}$

Comparison of ϵ_2 and v_2

In CuAu, $\epsilon_{2,Cu}$ and $\epsilon_{2,Au}$ calculated by Cu and Au nucleons separately.

- $\epsilon_{2,Cu}$ and $\epsilon_{2,Au}$ are determined with respect to Ψ_{PP}
- Ψ_{PP} is determined by all participant nucleons
- $\epsilon_{2,Au} > \epsilon_{2,CuAu} > \epsilon_{2,Cu}$
 - -> V_{2,Au} > V_{2,Cu}

-> Target nucleons geometry and projectile nucleons geometry survive hydrodynamic expansion

Results/Discussions 36

Scaling with E2,Cu, Npart,Cu and E2,Au, Npart,Au

 v_2 scaled with ε_2

- -In CuAu, v_2 is scaled with $\epsilon_{2,Au}$ and $\epsilon_{2,Cu}$ separately
- v₂(Cu-going) in CuAu : consistent with those in AuAu and CuCu
- v₂(Au-going) in CuAu : consistent with those in AuAu and CuCu for lower N_{part} inconsistent with those in AuAu for higher N_{part}

v₂ scaled with ε₂N_{part}^(1/3)

- In CuAu, N_{part,Au}^(1/3) and N_{part,Cu}^(1/3) are calculated separately
- In AuAu,CuCu, N_{part}/2 is used.
- -v₂(Au-going) are not consistent for higher N_{part}

System size dependence of v₃ at F/B

Weak centrality dependence of v₃ is seen for all collision systems AuAu:same centrality dependence as seen mid η CuAu: v₃ decrease as centrality decrease In CuAu collisions, v₃(Au-going) > v₃(Cu-going) for all centrality bins -> Like v₂, the different initial geometry cause the different v₃ ?

System size dependence of v₃ at F/B

In CuAu, $\epsilon_{3,Cu}$ and $\epsilon_{3,Au}$ calculated by Cu and Au nucleons separately.

- $\epsilon_{3,Cu}$ and $\epsilon_{3,Au}$ are determined with respect to Ψ_{PP}
- Ψ_{PP} is determined by all participant nucleons
- $\epsilon_{3,Au} > \epsilon_{3,CuAu} > \epsilon_{3,Cu}$
 - -> V_{3,Au} > V_{3,Cu}

-> Target nucleons geometry and projectile nucleons geometry survive hydrodynamic expansion

Results/Discussions 39

Scaling with E3,Cu, Npart,Cu and E3,Au, Npart,Au

 v_3 scaled with ε_3

- v₃(Au-going) and v₃(Cu-going) are consistent with each other but in consistent with those in AuAu for higher N_{part}
- v₃(Au-going) and v₃(Cu-going) are inconsistent for lower N_{part}

 v_3 scaled with $\epsilon_3 N_{part}^{(1/3)}$

- In CuAu, N_{part,Au}^(1/3) and N_{part,Cu}^(1/3) are calculated separately
- In AuAu, N_{part}/2 is used
- v₃(Cu-going) is inconsistent with those in AuAu and v₃(Au-going)

Results Discussions

- v₁,v₂,v₃ at mid-η
- v₂,v₃ at large-η
- v₁,v₂,v₃ theory comparison

Results/Discussions 41

MC-Glauber E-by-E hydro v1(pt) at mid-η

In hydro calculation,

-More low pT, particles are emitted to Cu side -More high pT, particles are emitted to Au side -Ideal hydro reproduce experimental data well

Results/Discussions 42

MC-Glauber E-by-E hydro v₂, v₃ at mid-η

For both centrality, both value of η /s agree with data

Parton cascade and hydro v₂(η)

- AMPT(parton cascade and hadron cascade) and Ideal hydrodynamic predict different v₂ value in Au going and Cu-going side
- ->Theory model predict different initial geometry survive collective expansion
- In peripheral and central collisions,
- data and hydro calculation show v₂ (Au-going)
 ~ v2(Cu-going)
- AMPT show v_2 (Au-going) > v_2 (Cu-going)
- ->Hydro calculation reproduce the ratio of v₂ (Au-going) and v₂(Cu-going)

Parton cascade and hydro v₃(η)

Unlike v₂ -data and AMPT show v₃ (Au-going) > v₃(Cu-going) -Hydro calculation show v₃(Au-going) ~ v₃(Cu-going)

->Hydro calculation doesn't reproduce the ratio of v₃ (Au-going) and v₃(Cu-going)

Summary

√V2, V3

-mid-ղ

 v_2 and v_3 are similar centrality and p_T dependence as seen in symmetric collisions

Empirical scaling of $\epsilon_2 N_{part}^{1/3}$ works v_2 in CuAu, CuCu, AuAu Empirical scaling of $\epsilon_3 N_{part}^{1/3}$ works v_3 in AuAu, CuAu

- Large-η

 v_2 , v_3 show different magnitude at forward/backward η originating from different initial participant anisotropy in Cu and Au nuclei Empirical scaling of $\epsilon_n N_{part}^{1/3}$ doesn't work well

- Theory comparison (mid- η) Hydro calculation needs $\eta/s(0.08-016)$ to reproduce v_{2} , v_{3}
- Theory comparison(large-η)
 Ideal hydro and AMPT doesn't agree with magnitude of v₂, v₃
 Ideal hydro reproduce the ratio of v₂(Au) and v₂(Cu)
 But Ideal hydro doesn't show the difference of v₃(Au) and v₃(Cu)

√-V₁

High p_T particles are emitted to Au side Ideal hydro calculation agree with v_1

Back Up

Charged pion v2, v3 in AuAu

March 2nd 2016 WWND H.Nakagomi

pi, K, p flow

 v_2 , v_3 have similar particle dependence v_3 scaled with $n_q^{3/2}$

Introduction 49

Scaling property : quark number scaling

 v_2 , v_3 have similar particle dependence v_3 scaled with $n_q^{3/2}$

Experiment/Analysis 50

Track identification at CNT(|η|<0.35)

TOF.E and TOF.W are used

-TOF.E : Scintillation counter 130ps -TOF.W : MRPC 95ps

Time of flight method

$$m^2 = p^2 \left(\left(\frac{ct}{L}\right)^2 - 1 \right)$$

m:particle mass, p:momentum, L:flight pass c:light velocity, t:time of flight

Charged pi,K,p -pi/K up to 3GeV -K/p up to 4GeV

Results/Discussions

- System size dependence
- PID vn
- Rapidity dependence
- Theory comparison

Identified particle v2 in Cu+Au

Mass ordering at low p_T for v_2 for all centralities Baryon and meson splitting at mid- p_T is seen

Results/Discussions 53

Identified particle v₁, v₃ in Cu+Au

arxiv:1509.07784

Same particle dependence of v_3 is seen as seen in v_2 Mass ordering is also seen for v_1

- At 1<pT<2.5GeV, Mass ordering is seen
- At low and high pt region, baryon v₁ ~ meson v₁
 Not same trend as seen in v₂, v₃

Quark Number Scaling of v2

Quark Number Scaling works v2 in CuAu

Quark Number Scaling for v3

Quark Number Scaling work v3 in CuAu

N_{part}^{1/3} is proportional system size

dif eCu, eAu same NpartCu and NpartAu

dif eCu, eAu same NpartCu and NpartAu

Scaling with E3, CuAu and Npart, CuAu

-v₃(Au-going) is not consistent with AuAu v₃
 -v₃(Cu-going) is consistent with AuAu v₃
 v₃ scaled with ε₃N_{part}^(1/3)
 -v₃(Au-going) is not consistent

Scaling with E2, CuAu and Npart, CuAu

 v_2 scaled with $\epsilon_{2,AB}$

- Scaled CuCu and AuAu v₂ show universal curve

-v₂(Au-going) is consistent with CuCu, AuAu v₂

-v₂(Cu-going) is not consistent with CuCu, AuAu v₂ except for peripheral

 v_2 scaled with $\epsilon_2 N_{part}^{(1/3)}$

-v₂(Cu-going) are not consistent for mid-central collisions

Comparison to AMPT v2

AMPT with 3mb reproduce v2 -In 0-30%, up to 2GeV -In 30-60%, up to 1GeV

Comparison to AMPT v3

AMPT with 3mb reproduce v3 -In 0-30%, up to 2GeV

March 2nd 2016 WWND H.Nakagomi

Azimuthal anisotropic flow

In relativistic heavy ion collisions, the azimuthal distribution of produced particles is anisotropic

Anisotropic initial overlap region(ε_n)

 $v_n = \langle \cos(n[\phi - \Psi_n]) \rangle$ ellipticity with respect to Ψ_n

Flow in symmetric collisions system

3sub method

Event Plane detectors

- 2nd, 3rd Event plane
 - Bbc, Cnt
- 1st Event plane
 - Bbc, Smd

Event Plane resolution -Estimated from EP correlations(3sub method)

$$Res\{\Psi_{n,A}^{obs}\} = \sqrt{\frac{<\cos(n[\Psi_{n,A}^{obs} - \Psi_{n,B}^{obs}]) > <\cos(n[\Psi_{n,A}^{obs} - \Psi_{n,C}^{obs}]) >}{<\cos(n[\Psi_{n,B}^{obs} - \Psi_{n,C}^{obs}]) >}$$

 $< \cos(n[\Psi_{n,A}^{obs} - \Psi_{n,B}^{obs}]) > = < \cos(n[\Psi_{n,A}^{obs} - \Psi_{n}^{true} + \Psi_{n}^{true} - \Psi_{n,B}^{obs}]) >$ $= < \cos(n[\Psi_{n,A}^{obs} - \Psi_{n}^{true}]) > < \cos(n[\Psi_{n}^{true} - \Psi_{n,B}^{obs}]) >$ $= Res\{\Psi_{n,A}\}Res\{\Psi_{n,B}\}$